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1 Polyhedral Products

Definition 1.1. Let K be a simplicial complex on [m] and

(X,A) = {(X1, A1), . . . , (Xm, Am)}

be a collection of m pairs of spaces, Ai ⊂ Xi. For each simplex I ∈ [m] we set

(X,A)I = {(x1, . . . , xm) ∈
∏

Xj : xj ∈ Aj for j ̸∈ I}

and define the polyhedral product of ((X),A) corresponding K by

(X,A)K =
⋃

(X,A)I

One can also consider the category obtained from the complex K, cat(K)
and take the limit

(X,A)K = colimI∈K(X,A)I

Definition 1.2. We call (X,A) a monoid pair of spaces if X is endowed with
an associative multiplication and unit which are both continuous maps and A is
a submonoid. A map of pairs of monoids is a map of pairs of spaces which is
also a monoid morphism.

Given a monoid pair (X,A), one can define the action of A on X by left
multiplication. So given a product of monoids

∏
Xi, and submonoids

∏
Ai,

one can define an action of this product by coordinate wise left multiplication.
If (X,A) is a monoid pair and ϕ : [l] → [m] is a set map, then it induces a

map
ψ : X l → Xm (x1, . . . , xl) 7→ (y1, . . . , ym), (1)

where
yj =

∏
i∈ϕ−1(j)

xi.

Proposition 1.1. If (X,A) is a monoid pair, then (X,A)K is an invariant
subspace of

∏
Xi with respect to the action of

∏
Ai on

∏
Xi.

Proof. (X,A)I is clearly invariant for I ∈ K.
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Proposition 1.2. (a) A set of map of pairs (X,A) → (X ′, A′) induces a map
of polyhedral products (X,A)K → (X ′, A′)K. If two sets of maps component
wise homotopic, then the induced maps are also homotopic.

(b) An inclusion of simplicial subcomplex L ↪→ K induces an inclusion of poly-
hedral products (X,A)L ↪→ (X,A)K.

(c) If (X,A) is a monoid pair, then for any simplicial map ϕ : L → K of
simplicial complexes on sets [l] and [m] respectively, the map (1) restricts
to a map of polyhedral products ψ : (X,A)L → (X,A)K.

(d) If (X,A) is a commutative monoid pair, then the restriction

ψ|A : Al → Am

of (1) is a homomorphism, and the induced map in the polyhedral products
is weakly equivariant.

Proof. (a) To see that there is an induced map of polyhedral products, notice
that there is an induced map for each simplex I ∈ K and that these maps
induced for I, J ∈ K are compatible on the intersections. Given a component
wise homotopy from (X,A) to (X ′, A′), i.e. a map (X×I, A×I) to (X ′, A′),
there is an induced map of polyhedral products

(X × I, A× I)K → (X ′, A′)K

where (X × I, A × I)K ≡ (X,A)K × Im. Restricting along the diagonal on
Im gives the desired homotopy.

(b) Note that I ∈ L implies I ∈ K.

(c) Note that for any I ⊂ [m], ψ((X,A)I) ⊂ (X,A)ϕ(I)

(d) Direct computation using equation (1).

For our use case, the example of most value is whenX = D2 and A = S1. We
define a moment angle complex on K as the polyhedral product ZK := (D2, S1)K

Note that there is a natural action of Tm = (S1)m on (D2, S1)[m] and ZK
is an invariant subspace. This is going to be the main object of study for us.
But before we can start deriving other results, we need to discuss some algebra
associated to a simplicial complex.

2 Face Ring of a Complex

Definition 2.1. The face ring of a simplicial complex K on the set [m] is the
quotient of the graded ring

k[K] = k[v1, . . . , vm]/IK

where IK is the ideal generated by all monomials of the form
∏

i∈I vi for I ̸∈ K.
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These are also called Stanley Reisner rings. We will only need the following
one result about it.

Proposition 2.1. The face ring k[K] has the k vector space basis consisting of
all the monomials va1

j1
· · · vak

jk
, such that ai > 0 and {j1, . . . , jk} ∈ K.

3 Principal Bundles and Borel Construction

Let X be a Hausdorff space and G a Hausdorff topological group. G acts on
X if for each g ∈ G, there is a homeomorphsim ϕg : X → X that respects the
algebraic and topological structure. A continuous map f : X → Y of spaces
equipped with G actions is called equivariant if f(g · x) = g · f(x) for all g ∈ G
and x ∈ X. It is weakly equivariant if given ψ : G → G an automorphism,
f(g · x) = ψ(g) · f(x).

A principal G bundle is a locally trivial bundle p : E → B such that G
acts on E preserving fibres and the induced G action on each fiber is free and
transitive. Notice that this implies that all the fibers are homeomorphic to G.

If G is a compact Lie group, then there exists a principal G bundle EG →
BG whose total space EG is contractible. If E → B is another principle G
bundle then there is a unique upto homotopy map f : B → BG such that E is
the pullback of EG along f . EG is called the universal G space and BG the
classifying space for free G actions.

If X is any G space, the diagonal action on EG × X given by g · (e, x) =
(g · e, g · x) is free. The orbit space is denoted by EG ×G X. There are two
projections associated to this space, one induced by the projection EG×X → X
given by EG×G X → X/G and the other induced by EG×X → EG given by
EG×G X → BG. Since the action of G on EG is free, the fiber for the second
one is X.

In fact, if G is compact Hausdorff, EG is contractible and so EG ×G X is
homotopy equivalent toX/G when theG action is free. This bundle EG×GX →
BG with fibre X is called the bundle associated with the G space X. The
cohomology H∗(EG×GX; k) is called the equivariant cohomology H∗

G(X, k) of
the G space X.

4 Equivariant cohomology of ZK

Specifically note that BTm = (CP∞)m and ETm = (S∞)m. The integral coho-
mology ring of (CP∞)m is Z[v1, . . . , vm], |vi| = 2. CP∞ has a cell decomposition
with one cell in every even dimension, so (CP∞)m has a canonical cell decom-
position induced by the product. (CP∞)K is a cellular subcomplex of (CP∞)m

and so it also has no cells in odd dimensions. This allows us to come to the
following proposition

Proposition 4.1. The cohomology ring of (CP∞)K is isomorphic to the face
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ring Z[K]. The inclusion (CP∞)K ↪→ (CP∞)m induces the quotient map

Z[v1, . . . , vm] → Z[v1, . . . , vm]/IK = Z[K].

Proof. Since both (CP∞)K and (CP∞)m only have cells in even dimensions,
the cohomology of both spaces coincides with their cellular cochain complexes.
Let D2k

j denote the 2k dimensional cell in the jth component of (CP∞)m.

The cellular cochain group has basis of cochains (D2k1
j1

· · ·D2kp

jp
)∗ dual to the

product cells D2k1
j1

× · · · × D
2kp

jp
. The cochain map induced by the inclu-

sion (CP∞)K ↪→ (CP∞)m is an epimorphism with kernel generated by those

chains (Dk1
j1

· · ·Dkp

jp
)∗ such that {j1, . . . , jp} ̸∈ K. Under the identification

of C∗((CP∞)m) with Z[v1, . . . , vm], a cochain is mapped to the monomial

vk1
j1

· · · vkp

jp
. Using Proposition 2.1, we can now conclude the result.

The moment angle complex over K, ZK inherits an action of Tm from it’s
action on (D2)m. So we can consider the Borel construction ETm ×Tm ZK for
the Tm space ZK. As it turns out, this is space homotopy equivalent to (CP∞)K

and we have the following factoring of the inclusion map.

Proposition 4.2. The inclusion i : (CP∞)K ↪→ (CP∞)m factors into a com-
position of homotopy equivalence

h : (CP∞)K → ETm ×Tm ZK

and the fibration p : ETm ×Tm ZK → BTm = (CP∞)m with fibre ZK.
In particular ZK is the homotopy fibre of the canonical inclusion i.

Proof. We note that ZK =
⋃

I(D
2, S1)I and so we have the decomposition

ETm ×Tm ZK =
⋃
I
(ETm ×Tm (D2, S1))

=
⋃
I

(S∞×S1 , S∞ ×S1 S1)I

=(S∞ ×S1 D2, S∞ ×S1 S1)K

Now consider the diagram

pt S∞ ×S1 S1 pt

CP∞ S∞ ×S1 D2 CP∞j f

where j is the inclusion of the zero section in a disc bundle and CP∞ = S∞/S1

and f is the projection

f : S∞ ×S1 D2 → (S∞ ×S1 D2)/(S∞ ×S1 S1) ∼= CP∞
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modding out the complement of the zero section. Since S∞ ×S1 S1 = S∞

and D2 are contractible, the composite maps f ◦ j and j ◦ f are homotopic
to the identity map. Therefore we have the homotopy equivalence of pairs
(CP∞, pt) → (S∞ ×S1 D2, S∞ ×S1 S1), which induces a homotopy equivalence
of polyhedral products by Proposition 1.2. Now to factor the inclusion, consider
the following diagram

pt S∞ ×S1 S1 CP∞

CP∞ S∞ ×S1 D2 CP∞j g

where now g is projection of the disc bundle onto the base. By passing to the
induced maps of polyhedral products we obtain

i : (CP∞)K → (S∞ ×S1 D2, S∞ ×S1 S1)K → (CP∞,CP∞)K

Corollary 4.3.
H∗

Tm(ZK) ∼= Z[K]
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