Polyhedral Products

Shubhankar

1 Polyhedral Products

Definition 1.1. Let \mathcal{K} be a simplicial complex on [m] and

$$(\mathbf{X}, \mathbf{A}) = \{(X_1, A_1), \dots, (X_m, A_m)\}$$

be a collection of m pairs of spaces, $A_i \subset X_i$. For each simplex $I \in [m]$ we set

$$(\mathbf{X}, \mathbf{A})^I = \{(x_1, \dots, x_m) \in \prod X_j : x_j \in A_j \text{ for } j \notin I\}$$

and define the polyhedral product of $((X), \mathbf{A})$ corresponding \mathcal{K} by

$$(\mathbf{X}, \mathbf{A})^{\mathcal{K}} = \bigcup (\mathbf{X}, \mathbf{A})^{I}$$

One can also consider the category obtained from the complex \mathcal{K} , $cat(\mathcal{K})$ and take the limit

$$(\mathbf{X}, \mathbf{A})^{\mathcal{K}} = \operatorname{colim}_{I \in \mathcal{K}} (\mathbf{X}, \mathbf{A})^{I}$$

Definition 1.2. We call (X, A) a monoid pair of spaces if X is endowed with an associative multiplication and unit which are both continuous maps and A is a submonoid. A map of pairs of monoids is a map of pairs of spaces which is also a monoid morphism.

Given a monoid pair (X, A), one can define the action of A on X by left multiplication. So given a product of monoids $\prod X_i$, and submonoids $\prod A_i$, one can define an action of this product by coordinate wise left multiplication.

If (X, A) is a monoid pair and $\phi : [l] \to [m]$ is a set map, then it induces a map

$$\psi: X^l \to X^m \ (x_1, \dots, x_l) \mapsto (y_1, \dots, y_m), \tag{1}$$

where

$$y_j = \prod_{i \in \phi^{-1}(j)} x_i.$$

Proposition 1.1. If (X, A) is a monoid pair, then $(X, A)^{\mathcal{K}}$ is an invariant subspace of $\prod X_i$ with respect to the action of $\prod A_i$ on $\prod X_i$.

Proof. $(X, A)^I$ is clearly invariant for $I \in \mathcal{K}$.

- **Proposition 1.2.** (a) A set of map of pairs $(X, A) \to (X', A')$ induces a map of polyhedral products $(X, A)^{\mathcal{K}} \to (X', A')^{\mathcal{K}}$. If two sets of maps component wise homotopic, then the induced maps are also homotopic.
- (b) An inclusion of simplicial subcomplex $\mathcal{L} \hookrightarrow \mathcal{K}$ induces an inclusion of polyhedral products $(X, A)^{\mathcal{L}} \hookrightarrow (X, A)^{\mathcal{K}}$.
- (c) If (X, A) is a monoid pair, then for any simplicial map $\phi : \mathcal{L} \to \mathcal{K}$ of simplicial complexes on sets [l] and [m] respectively, the map (1) restricts to a map of polyhedral products $\psi : (X, A)^{\mathcal{L}} \to (X, A)^{\mathcal{K}}$.
- (d) If (X, A) is a commutative monoid pair, then the restriction

$$\psi|_A: A^l \to A^m$$

of (1) is a homomorphism, and the induced map in the polyhedral products is weakly equivariant.

Proof. (a) To see that there is an induced map of polyhedral products, notice that there is an induced map for each simplex $I \in \mathcal{K}$ and that these maps induced for $I, J \in \mathcal{K}$ are compatible on the intersections. Given a component wise homotopy from (X, A) to (X', A'), i.e. a map $(X \times \mathbb{I}, A \times \mathbb{I})$ to (X', A'), there is an induced map of polyhedral products

$$(X \times \mathbb{I}, A \times \mathbb{I})^{\mathcal{K}} \to (X', A')^{\mathcal{K}}$$

where $(X \times \mathbb{I}, A \times I)^{\mathcal{K}} \equiv (X, A)^{\mathcal{K}} \times \mathbb{I}^{m}$. Restricting along the diagonal on \mathbb{I}^{m} gives the desired homotopy.

- (b) Note that $\mathcal{I} \in \mathcal{L}$ implies $\mathcal{I} \in \mathcal{K}$.
- (c) Note that for any $\mathcal{I} \subset [m]$, $\psi((X, A)^{\mathcal{I}}) \subset (X, A)^{\phi(\mathcal{I})}$
- (d) Direct computation using equation (1).

For our use case, the example of most value is when $X = D^2$ and $A = S^1$. We define a moment angle complex on \mathcal{K} as the polyhedral product $\mathcal{Z}_{\mathcal{K}} := (D^2, S^1)^{\mathcal{K}}$

Note that there is a natural action of $\hat{T}^m = (S^1)^m$ on $(D^2, S^1)^{[m]}$ and $\mathcal{Z}_{\mathcal{K}}$ is an invariant subspace. This is going to be the main object of study for us. But before we can start deriving other results, we need to discuss some algebra associated to a simplicial complex.

2 Face Ring of a Complex

Definition 2.1. The face ring of a simplicial complex \mathcal{K} on the set [m] is the quotient of the graded ring

$$k[\mathcal{K}] = k[v_1, \dots, v_m]/\mathcal{I}_{\mathcal{K}}$$

where $\mathcal{I}_{\mathcal{K}}$ is the ideal generated by all monomials of the form $\prod_{i \in I} v_i$ for $I \notin \mathcal{K}$.

These are also called Stanley Reisner rings. We will only need the following one result about it.

Proposition 2.1. The face ring $k[\mathcal{K}]$ has the k vector space basis consisting of all the monomials $v_{j_1}^{a_1} \cdots v_{j_k}^{a_k}$, such that $a_i > 0$ and $\{j_1, \ldots, j_k\} \in \mathcal{K}$.

3 Principal Bundles and Borel Construction

Let X be a Hausdorff space and G a Hausdorff topological group. G acts on X if for each $g \in G$, there is a homeomorphism $\phi_g : X \to X$ that respects the algebraic and topological structure. A continuous map $f : X \to Y$ of spaces equipped with G actions is called equivariant if $f(g \cdot x) = g \cdot f(x)$ for all $g \in G$ and $x \in X$. It is weakly equivariant if given $\psi : G \to G$ an automorphism, $f(g \cdot x) = \psi(g) \cdot f(x)$.

A principal G bundle is a locally trivial bundle $p: E \to B$ such that G acts on E preserving fibres and the induced G action on each fiber is free and transitive. Notice that this implies that all the fibers are homeomorphic to G.

If G is a compact Lie group, then there exists a principal G bundle $EG \rightarrow BG$ whose total space EG is contractible. If $E \rightarrow B$ is another principle G bundle then there is a unique upto homotopy map $f: B \rightarrow BG$ such that E is the pullback of EG along f. EG is called the universal G space and BG the classifying space for free G actions.

If X is any G space, the diagonal action on $EG \times X$ given by $g \cdot (e, x) = (g \cdot e, g \cdot x)$ is free. The orbit space is denoted by $EG \times_G X$. There are two projections associated to this space, one induced by the projection $EG \times X \to X$ given by $EG \times_G X \to X/G$ and the other induced by $EG \times X \to EG$ given by $EG \times_G X \to BG$. Since the action of G on EG is free, the fiber for the second one is X.

In fact, if G is compact Hausdorff, EG is contractible and so $EG \times_G X$ is homotopy equivalent to X/G when the G action is free. This bundle $EG \times_G X \rightarrow$ BG with fibre X is called the bundle associated with the G space X. The cohomology $H^*(EG \times_G X; k)$ is called the equivariant cohomology $H^*_G(X, k)$ of the G space X.

4 Equivariant cohomology of $\mathcal{Z}_{\mathcal{K}}$

Specifically note that $BT^m = (\mathbb{C}P^{\infty})^m$ and $ET^m = (S^{\infty})^m$. The integral cohomology ring of $(\mathbb{C}P^{\infty})^m$ is $\mathbb{Z}[v_1, \ldots, v_m]$, $|v_i| = 2$. $\mathbb{C}P^{\infty}$ has a cell decomposition with one cell in every even dimension, so $(\mathbb{C}P^{\infty})^m$ has a canonical cell decomposition induced by the product. $(\mathbb{C}P^{\infty})^{\mathcal{K}}$ is a cellular subcomplex of $(\mathbb{C}P^{\infty})^m$ and so it also has no cells in odd dimensions. This allows us to come to the following proposition

Proposition 4.1. The cohomology ring of $(\mathbb{C}P^{\infty})^{\mathcal{K}}$ is isomorphic to the face

ring $\mathbb{Z}[\mathcal{K}]$. The inclusion $(\mathbb{C}P^{\infty})^{\mathcal{K}} \hookrightarrow (\mathbb{C}P^{\infty})^m$ induces the quotient map

$$\mathbb{Z}[v_1,\ldots,v_m] \to \mathbb{Z}[v_1,\ldots,v_m]/\mathcal{I}_{\mathcal{K}} = \mathbb{Z}[\mathcal{K}]$$

Proof. Since both $(\mathbb{C}P^{\infty})^{\mathcal{K}}$ and $(\mathbb{C}P^{\infty})^m$ only have cells in even dimensions, the cohomology of both spaces coincides with their cellular cochain complexes. Let D_j^{2k} denote the 2k dimensional cell in the j^{th} component of $(\mathbb{C}P^{\infty})^m$. The cellular cochain group has basis of cochains $(D_{j_1}^{2k_1}\cdots D_{j_p}^{2k_p})^*$ dual to the product cells $D_{j_1}^{2k_1}\times\cdots\times D_{j_p}^{2k_p}$. The cochain map induced by the inclusion $(\mathbb{C}P^{\infty})^{\mathcal{K}} \hookrightarrow (\mathbb{C}P^{\infty})^m$ is an epimorphism with kernel generated by those chains $(D_{j_1}^{k_1}\cdots D_{j_p}^{k_p})^*$ such that $\{j_1,\ldots,j_p\} \notin \mathcal{K}$. Under the identification of $C^*((\mathbb{C}P^{\infty})^m)$ with $\mathbb{Z}[v_1,\ldots,v_m]$, a cochain is mapped to the monomial $v_{j_1}^{k_1}\cdots v_{j_p}^{k_p}$. Using Proposition 2.1, we can now conclude the result.

The moment angle complex over \mathcal{K} , $\mathcal{Z}_{\mathcal{K}}$ inherits an action of T^m from it's action on $(D^2)^m$. So we can consider the Borel construction $ET^m \times_{T^m} \mathcal{Z}_{\mathcal{K}}$ for the T^m space $\mathcal{Z}_{\mathcal{K}}$. As it turns out, this is space homotopy equivalent to $(\mathbb{C}P^{\infty})^{\mathcal{K}}$ and we have the following factoring of the inclusion map.

Proposition 4.2. The inclusion $i : (\mathbb{C}P^{\infty})^{\mathcal{K}} \hookrightarrow (\mathbb{C}P^{\infty})^m$ factors into a composition of homotopy equivalence

$$h: (\mathbb{C}P^{\infty})^{\mathcal{K}} \to ET^m \times_{T^m} \mathcal{Z}_{\mathcal{K}}$$

and the fibration $p: ET^m \times_{T^m} \mathcal{Z}_{\mathcal{K}} \to BT^m = (\mathbb{C}P^{\infty})^m$ with fibre $\mathcal{Z}_{\mathcal{K}}$. In particular $\mathcal{Z}_{\mathcal{K}}$ is the homotopy fibre of the canonical inclusion *i*.

Proof. We note that $\mathcal{Z}_{\mathcal{K}} = \bigcup_{\mathcal{I}} (D^2, S^1)^{\mathcal{I}}$ and so we have the decomposition

$$ET^m \times_{T^m} \mathcal{Z}_{\mathcal{K}} = \bigcup_{\mathcal{I}} (ET^m \times_{T^m} (D^2, S^1))$$
$$= \bigcup_{I} (S^{\infty} \times_{S^1}, S^{\infty} \times_{S^1} S^1)^{\mathcal{I}}$$
$$= (S^{\infty} \times_{S^1} D^2, S^{\infty} \times_{S^1} S^1)^{\mathcal{K}}$$

Now consider the diagram

$$\begin{array}{cccc} pt & \longrightarrow S^{\infty} \times_{S^{1}} S^{1} & \longrightarrow pt \\ \downarrow & & \downarrow \\ \mathbb{C}P^{\infty} & \stackrel{j}{\longrightarrow} S^{\infty} \times_{S^{1}} D^{2} & \stackrel{f}{\longrightarrow} \mathbb{C}P^{\infty} \end{array}$$

where j is the inclusion of the zero section in a disc bundle and $\mathbb{C}P^\infty=S^\infty/S^1$ and f is the projection

$$f: S^{\infty} \times_{S^1} D^2 \to (S^{\infty} \times_{S^1} D^2) / (S^{\infty} \times_{S^1} S^1) \cong \mathbb{C}P^{\infty}$$

modding out the complement of the zero section. Since $S^{\infty} \times_{S^1} S^1 = S^{\infty}$ and D^2 are contractible, the composite maps $f \circ j$ and $j \circ f$ are homotopic to the identity map. Therefore we have the homotopy equivalence of pairs $(\mathbb{C}P^{\infty}, pt) \to (S^{\infty} \times_{S^1} D^2, S^{\infty} \times_{S^1} S^1)$, which induces a homotopy equivalence of polyhedral products by Proposition 1.2. Now to factor the inclusion, consider the following diagram

where now g is projection of the disc bundle onto the base. By passing to the induced maps of polyhedral products we obtain

$$i: (\mathbb{C}P^{\infty})^{\mathcal{K}} \to (S^{\infty} \times_{S^{1}} D^{2}, S^{\infty} \times_{S^{1}} S^{1})^{\mathcal{K}} \to (\mathbb{C}P^{\infty}, \mathbb{C}P^{\infty})^{\mathcal{K}}$$

Corollary 4.3.

$$H^*_{T^m}(\mathcal{Z}_{\mathcal{K}}) \cong \mathbb{Z}[\mathcal{K}]$$