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On Polar Convexity in Finite-Dimensional
Euclidean Spaces ∗

Shubhankar Bhatt and Hristo S. Sendov

Abstract. Let R̂𝑛 be the one point compactification of R𝑛 obtained by adding a point at infinity. We
say that a subset 𝐴 ⊆ R̂𝑛 is u-convex if for every pair of points z1, z2 ∈ 𝐴, the arc of the unique circle
through u, z1 and z2 , from z1 to z2 and not containing u, is contained in 𝐴. In this case, we call u a
pole of 𝐴. When the pole u approaches infinity, u-convex sets become convex in the classical sense.
The notion of polar convexity in the complex plane has been used to analyze the behaviour of critical
points of polynomials. In this paper,we extend thenotion to finite-dimensional Euclidean spaces. The
goal of this paper is to start building the theory of polar convexity and to show that the introduction of
a pole creates a richer theory. For example, polar convexity enjoys a beautiful duality, seeTheorem4.3,
that does not exist in classical convexity. We formulate polar analogues of several classical results of
the alternatives, such as Gordan’s and Farkas’ lemmas, see Section 5. Finally, we give a full description
of the convex hull of finitely many points with respect to finitely many poles, see Theorem 6.7.

1 Introduction

LetR𝑛 be the real vector space of dimension 𝑛. We compactifyR𝑛 by adding an∞ point
and when we say that u → ∞, we mean ∥u∥ → ∞. Denote by R̂𝑛 the one point com-
pactification R𝑛 ∪ {∞}. Throughout this work, we identify the geometric structure of
C𝑛 with that ofR2𝑛. For example, when we say that something is a hyperplane inC𝑛, we
mean a hyperplane inR2𝑛, that is, an affine subspace of real dimension 2𝑛−1.Moreover,
we use bold face font to differentiate vectors from scalars.

Take a point u ∈ R̂𝑛 and a subset 𝐴 ⊂ R̂𝑛. Given any two points z1, z2 ∈ 𝐴, different
from u, there is a unique circle passing through u, z1, and z2. Denote by arcu [z1, z2] the
arc of this circle between z1 and z2 that does not contain u. We say that 𝐴 is u-convex if
for every pair of points z1, z2 ∈ 𝐴, the set arcu [z1, z2] is contained in 𝐴. In other words,
we say that 𝐴 is convex with respect to u, and we say that u is a pole for 𝐴. The observation
that some sets are convex with respect to a pole was made by Pólya and Szegö, see pages
53–56 in [8, Chapter 2], but to our knowledge it was not further developed.

Initial results about polar convexity in the complex plane can be found in [11], [12].
The motivation for developing a theory of polar convexity comes from the observa-
tion that polar convex sets can give refinements of classical results about the location
of critical points of polynomials. For example, in [11] polar convexity was used to give
a refinement of the following classical result by Laguerre: Let 𝑝(𝑧) be a polynomial of
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2 Sh. Bhatt and H.S. Sendov

degree 𝑛 ≥ 2 and let 𝑢 ∈ C. A circular domain containing the zeros of 𝑝(𝑧), but not the
point 𝑢, contains all zeros of the polar derivative of 𝑝(𝑧) with respect to 𝑢.

In [13], polar convexity was used to give a refinement of the Gauss-Lucas theorem,
stating that the critical points of a polynomial are in the convex hull of its zeros. In partic-
ular, [13] shows that the critical points of a polynomial of degree 𝑛 lie in the intersection
of 𝑛+1 polar convex hulls, one of them being the usual convex hull of the zeros. In addi-
tion, this refines amuch older result of Specht [14]. This paper aims to extend these tools
and notions to finite-dimensional Euclidean spaces. This allows us to see polar convex-
ity as a natural extension of the classical convex analysis. It is certain that classical convex
analysis has revolutionized mathematics finding applications in areas such as differen-
tial equations [7], geometry [4], optimization [10], matrix analysis [6], economics [5] [3],
andmanymore. The hope is to see polar convexity grow in the future and find its niches.
While this paper focuses on developing the initial results in the theory of polar convex-
ity, in a subsequent paper we will show how polar convexity has a deep connection with
the critical points and polar derivatives of multivariate polynomials.

In Section 2, we state the basic definitions and prove some preliminary geometric
facts.

In the extended complex plane, see [11] and [12], the development of the theory of
polar convexity was facilitated by the presence of Möbius transforms. In Section 3, we
go over a specific family of Möbius transformations in R𝑛 and their special properties
that will be important for us. Möbius transformations inR𝑛 have been studied at length
over the years and we refer the reader to [1, Chapter 3] for a more complete treatment.

Unlike the classical convexity, polar convexity enjoys a duality property, see
Theorem 4.3. In the complex plane, this was proved in [11] and a very special case of
the duality can be found in Problems 107, 112 on pages 54–55 in [8]. In Section 4 we
show that the duality holds in finite-dimensional Euclidean spaces and then we explore
its corollaries. As a consequence we obtain some criteria for checking whether a point
is an extreme point for a given polar convex set.

In Section 5, we talk about separation of sets using spherical domains and we derive
polar convex analogues of several classical results of the alternative, such as Gordan’s
and Farkas’ lemmas.

In Section 6, we look at sets that are convex with respect to multiple poles. We give
a complete characterization for the convex hull of finitely many points with respect to
finitely many poles. This allows us to prove some relationships between a set and the set
of its poles.

2 Preliminaries and Definitions

For any x ∈ R𝑛 ∖ {0}, let

x∗ :=
x

∥x∥2 .

This notation is motivated by the fact that ⟨x, x∗⟩ = 1 and ⟨x∗, x∗⟩ = 1/∥𝑥∥2, so x∗ acts
like the inverse of the conjugate of a complex number in C. We note the easy facts that

(x∗)∗ = x, ∥x∗∥ = ∥x∥−1, and (𝑐x)∗ = 𝑐−1x∗ for any 𝑐 ∈ R − {0}.
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On Polar Convexity in Finite-Dimensional Euclidean Spaces 3

With that in mind we define

x∗ :=
{
∞ if x = 0,
0 if x = ∞,

and let R̂𝑛 := R𝑛 ∪ {∞}.

Definition 2.1 For z1, z2, u ∈ R̂𝑛 with z1, z2 ≠ u, define

arcu [z1, z2] :=
{
u +

(
𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗

)∗ : 𝑡 ∈ [0, 1]
}
. (2.1)

If z1 = u or z2 = u, define arcu [z1, z2] := {z1, z2}.

Geometrically, as we will show in Proposition 3.3, this is the arc of the unique circle
passing through u, z1, z2 that lies between z1, z2 and does not include u. For example, if
𝑧1, 𝑧2, 𝑢 ∈ C, then (2.1) simplifies to

arc𝑢 [𝑧1, 𝑧2] =
{
𝑢 + 1

𝑡
𝑧1−𝑢 + 1−𝑡

𝑧2−𝑢
: 𝑡 ∈ [0, 1]

}
.

Notice that if the points z1, z2, and u are collinear with u in between z1 and z2, then
there is a 𝑡 ∈ [0, 1] , such that 𝑡 (z1−u)∗ + (1− 𝑡) (z2−u)∗ = 0, that is∞ ∈ arcu [z1, z2].
If z2 is taken to be∞ in (2.1), then

arc𝑢 [z1,∞] =
{
u + z1 − u

𝑡
: 𝑡 ∈ [0, 1]

}
=
{
u + 𝑠(z1 − u) : 𝑠 ∈ [1,∞)

}
∪ {∞}.

This is the ray, starting at z1 in the direction of (z1 − u) with∞ added to the ray.
The next lemma shows that when ∥u∥ → ∞, the arc (2.1) converges to the straight

line segment between z1 and z2. The proof can be found in the appendix.

Lemma 2.1 Given u, z1, z2 ∈ R𝑛 and 𝑡 ∈ [0, 1] , the point

u +
(
𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗

)∗
converges to 𝑡z1 + (1 − 𝑡)z2, as u → ∞.

Definition 2.2 Given points z1, . . . , z𝑘 ∈ R̂𝑛 and a u ∈ R̂𝑛 distinct from them, define
the convex hull of z1, . . . , z𝑘 with respect to u to be

convu{z1, . . . , z𝑘} :=
{
u +

( 𝑘∑︁
𝑖=1

𝑡𝑖 (z𝑖 − u)∗
)∗ : 𝑡𝑖 ≥ 0 with

𝑘∑︁
𝑖=1

𝑡𝑖 = 1
}
.

If, say z1 = u, we define convu{z1, . . . , z𝑘} := convu{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} ∪ {u}.

We say that u+
( ∑𝑘

𝑖=1 𝑡𝑖 (z𝑖 −u)∗
)∗ is a convex combination of z1, . . . , z𝑘 with respect to

the pole u or au-convex combination for short. A calculation similar to the one in the proof
of Lemma 2.1 shows that as we take the limit u → ∞, the expression u +

( ∑𝑘
𝑖=1 𝑡𝑖 (z𝑖 −

u)∗
)∗ converges to ∑𝑘

𝑖=1 𝑡𝑖z𝑖 , the usual convex combination of z1, . . . , z𝑘 . Thus, when
∞ ∉ {z1, . . . , z𝑘} we have

lim
u→∞

convu{z1, . . . , z𝑘} = conv{z1, . . . , z𝑘}.
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4 Sh. Bhatt and H.S. Sendov

So, we define

conv∞{z1, . . . , z𝑘} :=
{
conv{z1, . . . , z𝑘} if∞ ∉ {z1, . . . , z𝑘},
conv{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘} ∪ {∞}if∞ ∈ {z1, . . . , z𝑘}.

The next lemma, shows that the set-valuedmap u ↦→ convu{z1, . . . , z𝑘} has a closed
graph.

Lemma 2.2 Let z1, . . . , z𝑘 ∈ R̂𝑛 and let u ∈ R̂𝑛 be distinct from them. Let {u𝑚} be a
sequence converging to u. Then, for any sequence v𝑚 ∈ convu𝑚 {𝑧1, . . . , 𝑧𝑘} converging to
some v ∈ R̂𝑛, we have

v ∈ convu{z1, . . . , z𝑘}.
Conversely, if v ∈ convu{z1, . . . , z𝑘}, then there is a sequence {v𝑚}, converging to v, such
that v𝑚 ∈ convu𝑚 {z1, . . . , z𝑘} for every 𝑚.

Proof Since u ∉ {z1, . . . , z𝑘} and {u𝑚} converges to u, we may assume that u𝑚 ∉

{z1, . . . , z𝑘} for all 𝑚. Let v𝑚 = u𝑚 +
( ∑𝑘

𝑖=1 𝑡𝑚,𝑖 (z𝑖 − u𝑚)∗
)∗ for some 𝑡𝑚,𝑖 ≥ 0 with∑𝑘

𝑖=1 𝑡𝑚,𝑖 = 1. Without loss of generality, {𝑡𝑚,𝑖}𝑚 converges to 𝑡𝑖 ≥ 0, and
∑𝑘

𝑖=1 𝑡𝑖 = 1.
So we can just take the limit to conclude. The converse is straightforward. ■

Definition 2.3 A set 𝐴 ⊆ R̂𝑛 is said to be convex with respect to u ∈ R̂𝑛 or u-convex if for
any z1, z2 ∈ 𝐴, we have that arcu [z1, z2] ⊆ 𝐴. For a set 𝐴 ⊆ R̂𝑛, we define convu (𝐴) to
be the smallest, with respect to inclusion, u-convex set containing 𝐴.

Remark 2.3 It is a routine verification similar to the case of usual convexity, that
convu{z1, . . . , z𝑘} as in Definition 2.2 is indeed the smallest u-convex set containing
{z1, . . . , z𝑘}. It should also be clear that intersection of u-convex sets is u-convex. In
this way, convu (𝐴) is the intersection of all u-convex sets containing 𝐴. ■

Remark 2.4 The reader should note that R̂𝑛 ∖ {u} is always u-convex for any u ∈ R̂𝑛.
Now, let 𝐴 ⊆ R̂𝑛. If u ∉ 𝐴, then 𝐴 ⊆ R̂𝑛 ∖ {u} and so convu (𝐴) ⊆ R̂𝑛 ∖ {u}, by
the minimality in Definition 2.3, that is u ∉ convu (𝐴). Conversely, if u ∈ 𝐴, then since
𝐴 ⊆ convu (𝐴), we obtain u ∈ convu (𝐴). This shows

u ∈ convu (𝐴) if and only if u ∈ 𝐴. (2.2)

Similarly, for any u-convex set 𝐵, the sets 𝐵 ∖ {u} and 𝐵 ∪ {u} are u-convex. ■

Definition 2.4 Given 𝐴 ⊆ R̂𝑛, we denote by P(𝐴) the set of poles of 𝐴. That is, P(𝐴)
is the set of all points u ∈ R̂𝑛, such that 𝐴 is u-convex.

Example 2.5 Any closed half-space 𝐻 is convex with respect to any point not in its
interior, that isP(𝐻) = cl(𝐻𝑐). Let the closed half-space𝐻 ⊂ R̂𝑛 be given by {x ∈ R𝑛 :
⟨x, v⟩ ≥ 𝑐} ∪ {∞} for some fixed v ∈ R𝑛 and 𝑐 ∈ R. Without loss of generality, wemay
assume by translation that 𝑐 = 0. If u = ∞, there is nothing to show since 𝐻 is convex
in the usual sense. Let u ∈ R𝑛 be such that ⟨u, v⟩ ≤ 0 and let z1, z2 ∈ 𝐻 be distinct. If
z2 = ∞, then arcu [z1,∞] is the ray {𝑡z1+(1−𝑡)u : 𝑡 ≥ 1}, and so ⟨𝑡z1+(1−𝑡)u, v⟩ ≥ 0.
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On Polar Convexity in Finite-Dimensional Euclidean Spaces 5

If both z1, z2 are finite, let z = u +
(
𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗

)∗, where 𝑡 ∈ [0, 1].
Then, because ⟨z1, v⟩ and ⟨z2, v⟩ are both non-negative, we get the following inequality.

⟨z, v⟩ = ⟨u, v⟩ + ⟨𝑡 (z1 − u), v⟩/∥z1 − u∥2 + ⟨(1 − 𝑡) (z2 − u), v⟩/∥z2 − u∥2
∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2

≥ ⟨u, v⟩
(
1 − 𝑡/∥z1 − u∥2 + (1 − 𝑡)/∥z2 − u∥2

∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2
)
.

Since ⟨u, v⟩ ≤ 0, we need only show that

1 − 𝑡/∥z1 − u∥2 + (1 − 𝑡)/∥z2 − u∥2
∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2 ≤ 0.

This expression, following a similar computation as in the proof of Lemma 2.1, is
equal to

−𝑡 (1 − 𝑡)∥z1 − z2∥2
∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2∥z1 − u∥2∥z2 − u∥2 ,

which is clearly non-positive. Similarly, one can show that 𝐻 is not convex with respect
to any pole u in the interior of 𝐻. ■

Example 2.6 Consider the positive Lorentz cone, defined by

𝐿+ :=
{
(x, 𝑡) ∈ R𝑛+1 : x ∈ R𝑛, 𝑡 ∈ R, ∥x∥ ≤ 𝑡} ∪ {∞

}
.

For all v ∈ R𝑛, such that ∥v∥ = 1, we have that

𝐿+ ⊂ 𝐻+
v :=

{
(x, 𝑡) ∈ R𝑛+1 : ⟨(x, 𝑡), (−v, 1)⟩ ≥ 0} ∪ {∞

}
.

So

P(𝐿+) ⊂ cl((𝐻+
v )𝑐) =

{
(x, 𝑡) ∈ R𝑛+1 : ⟨(x, 𝑡), (−v, 1)⟩ ≤ 0} ∪ {∞

}
=: 𝐻−

v .

That is,

P(𝐿+) ⊆
⋂

v∈𝑆𝑛−1

𝐻−
v (2.3)

and since 𝐿+ =
⋂

v∈𝑆𝑛−1 𝐻+
v , one sees that equality holds in (2.3). But the right-hand side

of (2.3) is just the negative Lorentz cone

𝐿− :=
{
(x, 𝑡) ∈ R𝑛+1 : x ∈ R𝑛, 𝑡 ∈ R, ∥x∥ ≤ −𝑡} ∪ {∞

}
.

So we get P(𝐿+) = 𝐿− and vice-versa by symmetry. ■

3 Möbius transformations in R̂𝑛

The general theory of Möbius transformations in R̂𝑛 is outside the scope of this paper
and we refer the reader to [1]. In this section we quickly review their properties relevant
for our purposes. Geometrically, they are defined as finite compositions of reflections
in spheres and planes. We have already been using the Möbius transformation x ↦→ x∗,
which is the reflection in the unit sphere centred at the origin. Translations and rota-
tions areMöbius transformations. The essential property of theMöbius transformations
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6 Sh. Bhatt and H.S. Sendov

that allows polar convexity to work in C (see [11]) is that they send generalized circles
to generalized circles. In R𝑛 they send generalized spheres to generalized spheres. The
Möbius transformations that are important for this paper are the following family of
transformations, indexed by u ∈ R𝑛

𝑇u (z) :=
{
u + (z − u)∗ if z ≠ u,
∞ if z = u,

and let𝑇∞ := IdR̂𝑛 .Geometrically, these transformations can be described as a reflection
in the unit sphere centred at u. Note that it is immediate that if𝑇u (z) is as defined above,
then 𝑇2

u = IdR̂𝑛 , and so 𝑇u is an involution. Moreover, it is shown in [1, Chapter 3] that
Möbius transformations are continuous on R̂𝑛 under the chordal metric

𝑑 (x, y) :=


2 |x−y |
(1+|x |2 )

1
2 (1+|y |2 )

1
2

if x, y ≠ ∞,

2
(1+|x |2 )

1
2

if y = ∞,

which one gets by using the stereographic projection from 𝑆𝑛 onto R̂𝑛 embedded inside
R̂𝑛+1. The chordal metric restricted toR𝑛 is equivalent to the standard Euclideanmetric
and so Möbius transformations are continuous with respect to the standard metric as
well. In this work we refer to the standard metric only and not the chordal metric.

Definition 3.1 We call any hyperplane in R̂𝑛 (with∞ included) or any (𝑛 − 1)-sphere
in R̂𝑛 a generalized (𝑛 − 1)-sphere. We call half-spaces in R̂𝑛 (with∞ included) and (𝑛 −
1)-spherical domains, open or closed, as generalized (𝑛 − 1)-spherical domains.

The proof of the next proposition is included for completeness.

Proposition 3.1 The transformation 𝑇u, u ∈ R̂𝑛, sends a generalized (𝑛 − 1)-sphere to a
generalized (𝑛 − 1)-sphere.

Proof Translations preserve generalized (𝑛− 1)-spheres, so it is enough to prove that
the transformation 𝑇0 : x ↦→ x∗ preserves them. Any generalized (𝑛 − 1)-sphere in R̂𝑛

is the set of points that satisfy the equation

𝛼∥x∥2 − 2⟨x, a⟩ + 𝛽 = 0, (3.1)

for some parameters 𝛼, 𝛽 ∈ R and a ∈ R𝑛. By convention ∞ satisfies this equation if
and only if 𝛼 = 0, and then the set is a hyperplane. When x ≠ 0, dividing throughout by
∥x∥2 we get,

𝛼 − 2⟨x∗, a⟩ + 𝛽∥x∗∥2 = 0, (3.2)

and this is the equation of the image of (3.1) under𝑇0. If 0 satisfies the original equation,
then 𝛽 = 0, and (3.2) reduces to an equation of a hyperplane, in that case∞ also satisfies
that equation. ■
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Definition 3.2 We call any 𝑘-dimensional affine subspace of R̂𝑛 (with∞ included) or
any 𝑘 dimensional sphere (the intersection of a (𝑘+1)-dimensional affine subspacewith
an (𝑛 − 1)-sphere) in R̂𝑛 a generalized 𝑘-sphere.

Proposition 3.2 The transformation 𝑇u, u ∈ R̂𝑛, sends a generalized 𝑘-sphere to a
generalized 𝑘-sphere.

Proof Any 𝑘-sphere in R̂𝑛 can be written as an intersection of a (𝑛 − 1)-sphere with
𝑛− 𝑘−1 distinct hyperplanes. Since𝑇u is bijective, these are sent to distinct hyperplanes
and (𝑛 − 1)-spheres, and they intersect in a 𝑘-sphere. ■

Specifically this says that 𝑇u sends generalized circles to generalized circles and any
circle passing through u, since 𝑇u sends u to∞, is mapped to a line.

Proposition 3.3 For z1, z2, u ∈ R̂𝑛 with z1, z2 ≠ u, the set arcu [z1, z2] is the arc of the
unique circle passing through u, z1, z2 that lies between z1, z2 and does not include u.

Proof The Möbius transformation 𝑇u sends the circle through u, z1, z2 to the line
through ∞, 𝑇u (z1), 𝑇u (z2). The arc of the circle lying between z1, z2 that does not
include u, gets sent to the segment between 𝑇u (z1) and 𝑇u (z2) not containing∞. Tak-
ing the inverse image of the points on this segment, the points on the arc can be written
as 𝑇u (𝑡𝑇u (z1) + (1 − 𝑡)𝑇u (z2)) for 0 ≤ 𝑡 ≤ 1, which is exactly the parametrization in
Definition 2.1. ■

Proposition 3.4 The transformation 𝑇u, u ∈ R̂𝑛, sends u-convex sets to convex sets and
convex sets to u-convex sets.

Proof Let 𝑆 be a u-convex set and z1, z2 ∈ 𝑆. Since 𝑇u sends arcu [z1, z2] to the line
segment {𝑡𝑇u (z1) + (1 − 𝑡)𝑇u (z2) : 𝑡 ∈ [0, 1]}, we see that it is in 𝑇u (𝑆). As 𝑇u is a
bijection, we see that the segment between any pair of points from 𝑇u (𝑆) is in 𝑇u (𝑆), so
it is convex. A similar argument shows the other half of the lemma. ■

Definition 3.3 Let 𝑆 ⊂ R̂𝑛 be a sphere. We call a subset 𝑆′ ⊂ 𝑆, a spherical domain in
𝑆 if 𝑆′ = 𝑆∩ 𝑆′′ for some spherical domain 𝑆′′ in R̂𝑛. Equivalently, 𝑆′ ⊂ 𝑆 is a spherical
domain in 𝑆 if for some point u ∈ 𝑆, 𝑇u (𝑆′) is a spherical domain in the affine space
𝑇u (𝑆).

Remark 3.5 For any set 𝐴 ⊆ R̂𝑛, both convu (𝐴) and conv(𝑇u (𝐴)) are minimal sets
among the family ofu-convex sets and convex sets, containing 𝐴 and𝑇u (𝐴) respectively.
Since 𝑇u sends one family to the other, as a consequence of the last proposition, we get
that

𝑇u (convu (𝐴)) = conv(𝑇u (𝐴)).

So, in particular, we have

𝑇u (convu{z1, . . . , z𝑘}) = conv{𝑇u (z1), . . . , 𝑇u (z𝑘)}. (3.3)
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A consequence of this fact is the observation that if u, z1, . . . , z𝑘 are distinct points in
R̂𝑛, then u ∉ convu{z1, . . . , z𝑘}. Indeed, just note that

∞ ∉ conv{𝑇u (z1), . . . , 𝑇u (z𝑘)},

since all of the points 𝑇u (z𝑖), 𝑖 = 1, . . . , 𝑘 , are finite. ■

Example 3.6 Referring back to Example 2.5, we can now see that including the point
∞ in 𝐻 is crucial. Because if u ≠ ∞ were on the boundary of the half-space 𝐻, then
𝑇u (𝐻 ∖ {∞}) is a half-space with one point on the boundary missing, so it can not be
convex.

On the other hand, if u ∈ 𝐻𝑐 , then 𝑇u (𝐻 ∖ {∞}) is a closed sphere with one point
(i.e. u) on the boundarymissing, which happens to be convex, so𝐻∖{∞} is convexwith
respect to any pole in R̂𝑛 ∖ 𝐻. ■

Example 3.7 Any open half-space is convex with respect to any point not in it. Let the
open half-space 𝐻 ⊂ R̂𝑛 be given by

𝐻 = {x ∈ R𝑛 : ⟨x, v⟩ > 𝑐}

for some fixed v ∈ R𝑛 and 𝑐 ∈ R and let u ∉ 𝐻 be any point. The fact is simple if
u = ∞. If ⟨u, v⟩ = 0, then𝑇u (𝐻) is an open half-space and so it is convex as𝑇u maps the
boundary hyperplane 𝜕𝐻 := {x ∈ R̂𝑛 : ⟨x, v⟩ = 0} ∪ {∞} to a hyperplane. In a similar
fashion, if ⟨u, v⟩ < 0, then u ∉ 𝜕𝐻. Thus, 𝑇u maps the hyperplane 𝜕𝐻 to a proper
sphere. Since 𝑇u (u) = ∞ ∉ 𝑇u (𝐻), we get that 𝑇u (𝐻) is the bounded open sphere and
thus convex. Therefore, the open half-space 𝐻 is u-convex for any u ∈ R̂𝑛 ∖ 𝐻. ■

Example 3.8 We show that a spherical domain 𝑆 ⊆ R̂𝑛 (open or closed) is convex with
respect to any point u ∈ cl(𝑆𝑐). The cases when 𝑆 is an open or closed half-space have
been discussed in Examples 2.5 and 3.7. If u lies in 𝜕𝑆, then 𝑇u (𝜕𝑆) is a hyperplane. So,
𝑇u (𝑆) is a half-space and is therefore convex. If u is in (cl𝑆)𝑐 , then 𝑇u (𝜕𝑆) is a proper
sphere. Since u ∉ 𝑆, 𝑇u (𝑆) is the (open or closed) bounded component of R̂𝑛 ∖ 𝑇u (𝜕𝑆).
From thiswe can conclude that𝑇u (𝑆) is convex and hence 𝑆 isu-convex. In otherwords,
for a spherical domain 𝑆, we have P(𝑆) = cl(𝑆𝑐). ■

From now on the word generalized (in generalized spherical domains) will be
dropped and when talking of spherical domains it will be assumed that we mean
spherical domains of real co-dimension one unless otherwise stated.

Often in situations where we deal with a single pole u, we may use the transform 𝑇u
to send u to∞ and translate the problem to one in the realm of classical convexity.

4 A duality theorem

The goal of this section is to prove the ‘duality’ Theorem 4.3, which gives us a duality
between poles and points in the polar convex hull. Before we state it we record some
computational results that will aid us in the proof of the theorem.
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Lemma 4.1 Let u, z1, . . . , z𝑘 ∈ R̂𝑛 be distinct, and let

v = u +
( 𝑘∑︁
𝑖=1

𝑡𝑖 (z𝑖 − u)∗
)∗
,

for some 𝑡𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑘 , such that
∑𝑘

𝑖=1 𝑡𝑖 = 1. Then, we have the following relationships

(a) ∥v − u∥ = ∥∑𝑘
𝑖=1 𝑡𝑖 (z𝑖 − u)∗∥−1;

(b) (v − u)∗ = ∑𝑘
𝑖=1 𝑡𝑖 (z𝑖 − u)∗; and

(c)
∑𝑘

𝑖=1 𝑡𝑖
∥z𝑖−v∥2
∥z𝑖−u∥2 =

∑𝑘
𝑖=1 𝑡𝑖

∥v−u∥2
∥z𝑖−u∥2 − 1.

Proof (a) This part is straightforward:

∥v − u∥ =



( 𝑘∑︁

𝑖=1
𝑡𝑖 (z𝑖 − u)∗

)∗


 = 


 𝑘∑︁
𝑖=1

𝑡𝑖 (z𝑖 − u)∗



−1.

(b) This follows trivially from the fact that (x∗)∗ = x.
(c) We can rewrite the stated expression as

0 =

𝑘∑︁
𝑖=1

𝑡𝑖 (∥v − u∥2 − ∥z𝑖 − u∥2 − ∥z𝑖 − v∥2)
∥z𝑖 − u∥2 .

Then, we expand the part in the parenthesis in the numerator of each summand.

∥v−u∥2 − ∥z𝑖 − u∥2 − ∥z𝑖 − v∥2

= (⟨v, v⟩ − ⟨v, u⟩ − ⟨u, v⟩ + ⟨u, u⟩) − (⟨z𝑖 , z𝑖⟩ − ⟨z𝑖 , u⟩ − ⟨u, z𝑖⟩ + ⟨u, u⟩)
− (⟨z𝑖 , z𝑖⟩ − ⟨z𝑖 , v⟩ − ⟨v, z𝑖⟩ + ⟨v, v⟩)

= −⟨v, u⟩ − ⟨u, v⟩ − ⟨z𝑖 , z𝑖⟩ + ⟨z𝑖 , u⟩ + ⟨u, z𝑖⟩ − ⟨z𝑖 , z𝑖⟩ + ⟨z𝑖 , v⟩ + ⟨v, z𝑖⟩
= ⟨v − u, z𝑖 − u⟩ + ⟨z𝑖 − u, v − u⟩ − 2⟨z𝑖 − u, z𝑖 − u⟩.

Multiply the last expression by 𝑡𝑖 and divide it by ∥z𝑖 − u∥2. Then, sum over 𝑖 from
1 to 𝑘 and use part (b) of the current lemma, to obtain〈

v − u,
𝑘∑︁
𝑖=1

𝑡𝑖
z𝑖 − u

∥z𝑖 − u∥2
〉
+
〈 𝑘∑︁

𝑖=1
𝑡𝑖

z𝑖 − u
∥z𝑖 − u∥2 , v − u

〉
− 2

= ⟨v − u, (v − u)∗⟩ + ⟨(v − u)∗, v − u⟩ − 2
= 0.

This completes the proof. ■

Part (c) of the last lemma is often helpful in simplifying computations, as demon-
strated by the following example.

Example 4.2 It is well-known that the convex cone 𝑆𝑛+ of 𝑛 × 𝑛 positive semi-definite
matrices is a convex cone. We show here that it is also polar convex with respect to any
matrix in the negative semi-definite cone 𝑆𝑛− . To see this, take𝑈 ∈ 𝑆𝑛− and 𝐴1, 𝐴2 ∈ 𝑆𝑛+ ,
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then for any 𝑡 ∈ [0, 1] , let

𝐴 := 𝑈 +
(
𝑡 (𝐴1 −𝑈)∗ + (1 − 𝑡) (𝐴2 −𝑈)∗

)∗
.

We show that 𝐴 is a positive semi-definite matrix. Indeed, by Lemma 4.1, part (a), we
have

𝐴 = 𝑈 + 𝑡 (𝐴1 −𝑈)∗ + (1 − 𝑡) (𝐴2 −𝑈)∗
∥𝑡 (𝐴1 −𝑈)∗ + (1 − 𝑡) (𝐴2 −𝑈)∗∥2

= 𝑈 + (𝑡 (𝐴1 −𝑈)∗ + (1 − 𝑡) (𝐴2 −𝑈)∗)∥𝐴 −𝑈∥2

= 𝑈 +
(
𝑡

𝐴1 −𝑈

∥𝐴1 −𝑈∥2 + (1 − 𝑡) 𝐴2 −𝑈

∥𝐴2 −𝑈∥2
)
∥𝐴 −𝑈∥2

= 𝑈

(
1 − 𝑡

∥𝐴 −𝑈∥2
∥𝐴1 −𝑈∥2 − (1 − 𝑡) ∥𝐴 −𝑈∥2

∥𝐴2 −𝑈∥2
)

+ 𝐴1𝑡
∥𝐴 −𝑈∥2
∥𝐴1 −𝑈∥2 + 𝐴2 (1 − 𝑡) ∥𝐴 −𝑈∥2

∥𝐴2 −𝑈∥2

= −𝑈
(
𝑡
∥𝐴1 − 𝐴∥2
∥𝐴1 −𝑈∥2 + (1 − 𝑡) ∥𝐴2 − 𝐴∥2

∥𝐴2 −𝑈∥2
)

+ 𝐴1𝑡
∥𝐴 −𝑈∥2
∥𝐴1 −𝑈∥2 + 𝐴2 (1 − 𝑡) ∥𝐴 −𝑈∥2

∥𝐴2 −𝑈∥2 ≥ 0,

where the last equality follows from Lemma 4.1, part (c). We see that 𝐴 is a linear com-
bination of positive semi-definite matrices with non-negative coefficients. Therefore, 𝐴
is a positive semi-definite matrix. ■

With these identities proved, we proceed to prove the main result in this section,
which gives us a duality between poles and points in the polar convex hull.

Theorem 4.3 (Duality Theorem) Let u, v, z1, . . . , z𝑘 be distinct points in R̂𝑛. Then

v ∈ convu{z1, . . . , z𝑘} if and only if u ∈ convv{z1, . . . , z𝑘}.

Proof By symmetry, we prove only the necessity. Without loss of generality, we
may assume that none of u, v, z1, . . . , z𝑘 are ∞. (Otherwise, pick a point z ∉

{u, v, z1, . . . , z𝑘}, and apply 𝑇z.) Let

v = u +
( 𝑘∑︁
𝑖=1

𝑡𝑖 (z𝑖 − u)∗
)∗
,
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for some 𝑡𝑖 ≥ 0,
∑𝑘

𝑖=1 𝑡𝑖 = 1. Observe that

𝑘∑︁
𝑖=1

𝑡𝑖
z𝑖 − v

∥z𝑖 − u∥2 =

𝑘∑︁
𝑖=1

𝑡𝑖 (z𝑖 − u)∗ + 𝑡𝑖
u − v

∥z𝑖 − u∥2

= (v − u)∗ +
𝑘∑︁
𝑖=1

𝑡𝑖
u − v

∥z𝑖 − u∥2

= (v − u)
( 1
∥v − u∥2 −

𝑘∑︁
𝑖=1

𝑡𝑖

∥z𝑖 − u∥2
)
.

Thus, we continue( 𝑘∑︁
𝑖=1

𝑡𝑖
z𝑖 − v

∥z𝑖 − u∥2
)∗

= (v − u)∗
( 1
∥v − u∥2 −

𝑘∑︁
𝑖=1

𝑡𝑖

∥z𝑖 − u∥2
)−1

= (v − u)∗∥v − u∥2
(
1 −

𝑘∑︁
𝑖=1

𝑡𝑖
∥v − u∥2
∥z𝑖 − u∥2

)−1
= (u − v)

( 𝑘∑︁
𝑖=1

𝑡𝑖
∥z𝑖 − v∥2
∥z𝑖 − u∥2

)−1
,

where in the last equality we used part (c) of Lemma 4.1. Define

𝜇𝑖 :=
𝑡𝑖 ∥z𝑖 − v∥2∥z𝑖 − u∥−2∑𝑘
𝑗=1 𝑡 𝑗 ∥z 𝑗 − v∥2∥z 𝑗 − u∥−2

≥ 0, (4.1)

and note that
∑𝑘

𝑖=1 𝜇𝑖 = 1. Using the above calculation in the second equality below, we
get ( 𝑘∑︁

𝑖=1
𝜇𝑖 (z𝑖 − v)∗

)∗
=

( 𝑘∑︁
𝑖=1

𝑡𝑖
∥z𝑖 − v∥2
∥z𝑖 − u∥2

) ( 𝑘∑︁
𝑖=1

𝑡𝑖
z𝑖 − v

∥z𝑖 − u∥2
)∗

=

( 𝑘∑︁
𝑖=1

𝑡𝑖
∥z𝑖 − v∥2
∥z𝑖 − u∥2

)
(u − v)

( 𝑘∑︁
𝑖=1

𝑡𝑖
∥z𝑖 − v∥2
∥z𝑖 − u∥2

)−1
= u − v.

Adding v to the first and last terms of the above equalities, we conclude

u = v +
( 𝑘∑︁
𝑖=1

𝜇𝑖 (z𝑖 − v)∗
)∗
,

and hence u ∈ convv{z1, . . . , z𝑘}. ■

Since a set is unbounded when its closure contains the point∞, we get the following
corollary.
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Corollary 4.4 Let u, z1, . . . , z𝑘 be distinct points in R𝑛. The set convu{z1, . . . , z𝑘} is
unbounded if and only if u ∈ conv{z1, . . . , z𝑘}.

Define the relative interior of convu{z1, . . . , z𝑘} to be the set

ri convu{z1, . . . , z𝑘} := 𝑇−1
u (ri conv{𝑇u (z1), . . . , 𝑇u (z𝑘)}).

In other words, this is the preimage under 𝑇u of the relative interior of the convex set
𝑇u (convu{z1, . . . , z𝑘}). Using Theorem 6.9 in [10], it is not difficult to see that

ri convu{z1, . . . , z𝑘} =
{
u +

( 𝑘∑︁
𝑖=1

𝑡𝑖 (z𝑖 − u)∗
)∗

: 𝑡𝑖 > 0 with
𝑘∑︁
𝑖=1

𝑡𝑖 = 1
}
.

Then, from formulae (4.1) in the proof of Theorem 4.3, we obtain the next corollary.

Corollary 4.5 Let u, v, z1, . . . , z𝑘 ∈ R̂𝑛 be distinct points. Then, v is in the relative inte-
rior (resp. boundary) of convu{z1, . . . , z𝑘} if and only if u is in the relative interior (resp.
boundary) of convv{z1, . . . , z𝑘}.

Definition 4.1 Let u, z1, . . . , z𝑘 ∈ R̂𝑛 be distinct points. We say that v ∈
convu{z1, . . . , z𝑘} is au-extreme point, if it cannot bewritten as au-convex combination,
with positive coefficients, of any two distinct points in convu{z1, . . . , z𝑘}.

Equivalently, v is u-extreme if 𝑇u (v) is an extreme point of the convex set
conv{𝑇u (z1), . . . , 𝑇u (z𝑘)}. This shows, using classical convex analysis, that the extreme
points of convu{z1, . . . , z𝑘} are among the points z1, . . . , z𝑘 . Thus, we have the follow-
ing corollary.

Corollary 4.6 Let u, z1, . . . , z𝑘 ∈ R̂𝑛 be distinct points. Then, z𝑖 is a u-extreme point of
convu{z1, . . . , z𝑘} if and only if u ∉ convz𝑖 {z1, . . . , z𝑖−1, z𝑖+1, . . . , z𝑘}.

Proof To see necessity, fix an 𝑖 ∈ {1, . . . , 𝑘} and assume

u ∈ convz𝑖 {z1, . . . , z𝑖−1, z𝑖+1, . . . , z𝑘}.

Since u ≠ z𝑖 , there are 𝑡 𝑗 ∈ [0, 1] , for 𝑗 ∈ {1, . . . , 𝑘} − {𝑖}, such that∑︁
𝑗∈{1,...,𝑘}−{𝑖}

𝑡 𝑗 = 1 and u = 𝑇z𝑖
( ∑︁
𝑗∈{1,...,𝑘}−{𝑖}

𝑡 𝑗𝑇z𝑖 (z 𝑗 )
)
.

Moreover, since u ∉ {z1, . . . , z𝑘} − {z𝑖}, none of the 𝑡 𝑗 can be 1. So, u is not
a z𝑖-extreme point of convz𝑖 {z1, . . . , z𝑖−1, z𝑖+1, . . . , z𝑘}. Using Theorem 4.3, z𝑖 ∈
convu{z1, . . . , z𝑖−1, z𝑖+1, . . . , z𝑘} and by definition, z𝑖 is not a u-extreme point. The
argument for the sufficiency is similar. ■

Remark 4.7 If one takes u = ∞ in Corollary 4.6, we get that z𝑖 is a u extreme
point of conv{z1, . . . , z𝑘} if and only if∞ ∉ convz𝑖 {z1, . . . , z𝑖−1, z𝑖+1, . . . , z𝑘}. Using
Theorem 4.3, the latter condition is equivalent to z𝑖 ∉ conv{z1, . . . , z𝑖−1, z𝑖+1, . . . , z𝑘},
which is equivalent to the definition of an extreme point in classical convex analysis.
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Corollary 4.8 Let u ∈ R̂𝑛 and 𝑍 ⊂ R̂𝑛 be a u-convex set, not containing u. Then, v ∈ 𝑍 is
a u-extreme point if and only if u ∉ convv (𝑍).

Proof If v is not a u-extreme point, then there are points z1, z2 ∈ 𝑍 distinct from v,
such that v ∈ convu{z1, z2}. Therefore, u ∈ convv{z1, z2} ⊆ convv (𝑍). Conversely,
if u ∈ convv (𝑍), then by Carathéodory’s theorem there are points z1, . . . , z𝑘 ∈ 𝑍 , for
some 𝑘 ≤ 𝑛 + 1, distinct from u and v, such that u ∈ convv{z1, . . . , z𝑘}. This implies
that v ∈ convu{z1, . . . , z𝑘}. Therefore, v cannot be u-extreme. ■

With the notation from the last corollary, note that since for any v ∈ int(𝑍), we get
that convv (𝑍) = R̂𝑛, therefore no point in the interior of 𝑍 can be a u-extreme point
for any u.

Proposition 4.9 Let u, v, z1, . . . , z𝑘 be distinct points in R̂𝑛, not all on a circle, then neither
of the sets convu{z1, . . . , z𝑘} and convv{z1, . . . , z𝑘} is contained in the other.

Proof Without loss of generality, we may assume u = ∞, so v, z1, . . . , z𝑘 ∈ R𝑛. We
show that

conv{z1, . . . , z𝑘} ⊈ convv{z1, . . . , z𝑘}

with the opposite non-inclusion being analogous. Since the points are not all on a
circle, there are at least two distinct points in z1, . . . , z𝑘 , i.e. 𝑘 ≥ 2. Since v ∉

{z1, . . . , z𝑘}, we have that v ∉ convv{z1, . . . , z𝑘}. If v ∈ conv{z1, . . . , z𝑘}, then we
are done. Assume this is not the case, then there is a closed half-space 𝐻 containing
conv{z1, . . . , z𝑘} having at least two points z𝑖 , z 𝑗 on the boundary and not containing
v. Let z ∈ conv{z𝑖 , z 𝑗 } ∖ {z1, . . . , z𝑘}, that is z ∈ conv{z1, . . . , z𝑘}. Since 𝐻 is also
z-convex, we get that v ∉ convz{z1, . . . , z𝑘} ⊆ 𝐻. By Theorem 4.3, we obtain that
z ∉ convv{z1, . . . , z𝑘}, concluding the argument. ■

5 Theorems of the alternatives

Analogous to classical convexity, we prove a separation theorem involving polar convex
sets. This naturally leads into theorems of alternatives. However, where theorems of
alternatives usually imply the existence of 1-forms or solutions to linear systems in the
classical setting, theorems of alternatives in the polar setting imply existence of 2-forms.
We start by noting a few simple facts. We refer the reader to [10, Section 11] to recall the
various versions of the hyperplane separation theorem.

Definition 5.1 A spherical domain 𝑆 ⊆ R̂𝑛 is said to separate two sets 𝐴, 𝐵 ⊆ R̂𝑛 if
either 𝐴 ⊆ 𝑆 and 𝐵 ⊆ cl(𝑆𝑐) or 𝐵 ⊆ 𝑆 and 𝐴 ⊆ cl(𝑆𝑐). Such a spherical domain (or the
boundary of the spherical domain) is called a separating spherical domain (or separating
sphere) for the pair 𝐴, 𝐵. We say that 𝑆 strongly separates 𝐴 and 𝐵, if it separates these sets
and 𝐴 ∩ 𝜕𝑆 = ∅ = 𝐵 ∩ 𝜕𝑆.
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Lemma 5.1 (Spherical Separation) If u ∈ R̂𝑛 and 𝐴, 𝐵 are non-intersecting u-convex sets
in R̂𝑛, then there exists a (𝑛−1)-spherical domain 𝑆, havingu on its boundary, which separates
𝐴 and 𝐵. Moreover, if u ∉ 𝐴 ∪ 𝐵 and one of the following holds

(1) 𝐴 is closed in R̂𝑛 and 𝐵 is closed in R̂𝑛 ∖ {u}, or
(2) 𝐴 and 𝐵 are both open,

then 𝑆 can be chosen to strongly separate 𝐴 and 𝐵, still having u on its boundary.

Proof Note that 𝑇u (𝐴) and 𝑇u (𝐵) are non-intersecting convex sets. The classical
hyperplane separation theorem implies that there is a hyperplane𝐻 that separates𝑇u (𝐴)
and 𝑇u (𝐵). Then, 𝑇u (𝐻) is an (𝑛 − 1)-sphere, having u on its boundary, separating 𝐴

and 𝐵. Next, note that if u ∉ 𝐴 ∪ 𝐵, then 𝑇u (𝐴), 𝑇u (𝐵) ⊆ R𝑛.
(1) If 𝐴 is closed as a subset of R̂𝑛, then it is compact. Since u ∉ 𝐴, 𝑇u (𝐴) is compact

in R𝑛. Similarly, if 𝐵 is closed in R̂𝑛 ∖ {u}, then 𝑇u (𝐵) is closed in R𝑛.
(2) If 𝐴 and 𝐵 are both open, then so are the convex sets 𝑇u (𝐴) and 𝑇u (𝐵).
In both cases, from ordinary convexity, we can find a separating hyperplane 𝐻, such

that 𝑇u (𝐴) ∩ 𝜕𝐻 = ∅ = 𝑇u (𝐵) ∩ 𝜕𝐻. We conclude by setting 𝑆 := 𝑇𝑢 (𝐻). ■

Lemma 5.2 Let 𝑍 ⊆ R̂𝑛 be closed and let u ∈ R̂𝑛 be such that u ∉ 𝜕𝑍 . Then, convu (𝑍) is
closed in R̂𝑛.

Proof Without loss of generality,wemay assumeu = ∞. If∞ ∉ 𝑍 , then 𝑍 is a bounded
closed set. So we can conclude that conv(𝑍) is closed. Otherwise, ∞ ∈ int(𝑍), then
conv(𝑍) = R̂𝑛, so we are done. ■

Example 5.3 Note that the assumption u ∉ 𝜕𝑍 in Lemma 5.2 is necessary. Indeed, take
the set

𝑍 = {𝑧 ∈ C : |𝑧 | = 1} ∪ {0, (1 + 𝑖)/2}

and take the pole 𝑢 = 1. Notice that both 0 and (1+𝑖)/2 lie on the circle |𝑧−1/2| = 1/2,

Figure 1: The set 𝑍 (in black) and its 𝑢-convex hull (in orange).
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which also passes through 𝑢. Then, it can be shown that

conv𝑢 (𝑍) = 𝑍 ∪ {𝑧 ∈ C : |𝑧 | < 1, |𝑧 − 1/2| > 1/2} ∪ arc𝑢 [0, (1 + 𝑖)/2],

which is not closed. ■

Lemma 5.4 (Gordan’s Lemma) Let u, z1, . . . , z𝑘 ∈ R̂𝑛 be distinct, such that u ≠ 0,∞.
Then either there are numbers 𝑡1, . . . , 𝑡𝑘 ∈ [0, 1] with∑𝑘

𝑖=1 𝑡𝑖 = 1, such that

(0 − u)∗ =
𝑘∑︁
𝑖=1

𝑡𝑖 (z𝑖 − u)∗, (5.1)

or there exist some a ∈ R𝑛, 𝛼, 𝛽 ∈ R, with 𝛽 > 0, such that

𝛼⟨z𝑖 , z𝑖⟩ + ⟨z𝑖 , a⟩ + 𝛽 < 0, for all 𝑖 = 1, . . . , 𝑘, and (5.2)
𝛼⟨u, u⟩ + ⟨u, a⟩ + 𝛽 = 0.

Proof Note that Equation (5.1) is the same as saying that 0 ∈ convu{z1, . . . , z𝑘}.
Assume that this is not the case. Since u ∉ {z1, . . . , z𝑘}, the set convu{z1, . . . , z𝑘} is
closed. So, by Lemma 5.1 there is a spherical domain 𝑆, having u on its boundary, that
strongly separates {0} and convu{z1, . . . , z𝑘}, that is

𝜕𝑆 ∩ convu{z1, . . . , z𝑘} = ∅ = 𝜕𝑆 ∩ {0}.

Let 𝛼⟨x, x⟩ + ⟨x, v⟩ + 𝛽 = 0 be the equation of the boundary of the spherical domain
𝑆. Since it separates {0} and convu{z1, . . . , z𝑘}, both of them evaluate to different signs
and neither of them are zero. In particular, since 0 ∉ 𝜕𝑆, we have

𝛽 = 𝛼⟨0, 0⟩ + ⟨0, a⟩ + 𝛽 ≠ 0,

If 𝛽 > 0we are done, otherwise take−a,−𝛼, and−𝛽 to get the inequalities in (5.2). Since
u ∈ 𝜕𝑆, we get the equality in (5.2). ■

Remark 5.5 Lemma 5.4 implies the classical Gordan’s lemma. Indeed, applying ∗ and
adding u to both sides of (5.1) give

0 = u +
( 𝑘∑︁
𝑖=1

𝑡𝑖 (z𝑖 − u)∗
)∗
.

Taking limits as u → ∞ and using Lemma 2.1, we see that (5.1) converges to

0 =

𝑘∑︁
𝑖=1

𝑡𝑖z𝑖 .

This is equivalent to saying that 0 ∈ conv{z1, . . . , z𝑘}.
On the other hand, if 0 ∉ conv{z1, . . . , z𝑘} and letting u converge to∞, the strongly

separating sphere in the proof of Lemma 5.4 becomes a hyperplane since it is chosen
to pass through the pole u. By case (1) of Lemma 5.1 it can be chosen to be strongly
separating. Let its equation be ⟨z, a⟩ + 𝛽 = 0. We may choose the sign of a and 𝛽 so that

⟨z𝑖 , a⟩ + 𝛽 < 0 for all 𝑖 = 1, . . . , 𝑘 .
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16 Sh. Bhatt and H.S. Sendov

Since the hyperplane is strongly separating the sets {z1, . . . , z𝑘} and {0}, we must have
⟨0, a⟩ + 𝛽 > 0, that is, 𝛽 > 0. Combining with the previous equation, we get

⟨z𝑖 , a⟩ < 0 for all 𝑖 = 1, . . . , 𝑘

Thus recovering the equations of the alternative in the classical Gordan’s lemma, see [2,
Theorem 2.2.1].

Lemma 5.6 (Farkas’ Lemma I) Let z1, . . . , z𝑘 ∈ R̂𝑛 be distinct and not all 0 and let

u := −
𝑘∑︁
𝑖=1

𝑡𝑖z𝑖 for some 𝑡1, . . . , 𝑡𝑘 ∈ [0,∞).

Suppose u is distinct from z1, . . . , z𝑘 and let v ∈ R̂𝑛∖{∞, u}. Then, either there are numbers
𝛼1, . . . , 𝛼𝑘 ∈ [0,∞), such that

v =

𝑘∑︁
𝑖=1

𝛼𝑖z𝑖 , (5.3)

or there exist a ∈ R𝑛 and 𝛼, 𝛽 ∈ R, with 𝛼 ≥ 0, such that

𝛼⟨z𝑖 , z𝑖⟩ + ⟨z𝑖 , a⟩ + 𝛽 > 0, for all 𝑖 = 1, . . . , 𝑘,
𝛼⟨v, v⟩ + ⟨v, a⟩ + 𝛽 < 0, and (5.4)
𝛼⟨u, u⟩ + ⟨u, a⟩ + 𝛽 = 0.

Proof If u = −∑𝑘
𝑖=1 𝑡𝑖z𝑖 for 𝑡𝑖 ∈ [0,∞), then u ∈ −cone{z1, . . . , z𝑘} and so

cone{z1, . . . , z𝑘} is u-convex. (The argument for the latter is analogous to the one in
Example 2.6.) Consequently, cone{z1, . . . , z𝑘} ∪ {∞} is also u-convex. Thus, for any
v ∈ R̂𝑛 ∖ {∞, u}, either v ∈ cone{z1, . . . , z𝑘} or there exists a spherical domain
𝑆, having u on its boundary, separating v and cone{z1, . . . , z𝑘} ∪ {∞}. Again, since
cone{z1, . . . , z𝑘} ∪ {∞} is closed, this domain can be chosen so that

𝜕𝑆 ∩
(
cone{z1, . . . , z𝑘} ∪ ∞

)
= ∅ = 𝜕𝑆 ∩ {v}.

Let 𝛼⟨x, x⟩ + ⟨x, a⟩ + 𝛽 = 0 be the equation of the boundary of the spherical domain
𝑆. Since cone{z1, . . . , z𝑘} is an unbounded set, it must lie in an unbounded component
of R𝑛 ∖ 𝜕𝑆. If 𝜕𝑆 happens to be a hyperplane, then 𝛼 = 0 and we can choose the signs
of a and 𝛽 to satisfy (5.4). Otherwise, R𝑛 ∖ 𝜕𝑆 has only one unbounded component
and we can choose the coefficient 𝛼 to be positive. Then, since cone{z1, . . . , z𝑘} is an
unbounded set, the quadratic term in 𝛼⟨z𝑖 , z𝑖⟩ + ⟨z𝑖 , a⟩ + 𝛽 determines the sign of the
whole expression, one can see the set of inequalities in (5.4). Since v lies in the bounded
component, we have 𝛼⟨v, v⟩ + ⟨v, a⟩ + 𝛽 < 0. Finally, the boundary of the spherical
domain passes through u giving the third statement in (5.4). ■

Remark 5.7 Following the same reasoning as in Remark 5.5, as u goes to∞, Equation
(5.3) is equivalent to v ∈ cone{z1, . . . , z𝑘}. Suppose that is not the case. Case (1) of
Lemma 5.1 is applicable, and there is a hyperplane ⟨z, a⟩ + 𝛽 = 0 strongly separating
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cone{z1, . . . , z𝑘} and {v}, such that

⟨z𝑖 , a⟩ + 𝛽 < 0, for all 𝑖 = 1, . . . , 𝑘, and
⟨v, a⟩ + 𝛽 > 0.

These are exactly the alternative equations given by the classical Farkas’ Lemma, see [2,
Lemma 2.2.7].

We redefine the cone of z1, . . . , z𝑘 ∈ R𝑛 from classical convex analysis to include
the point at∞ as follows:

cone{z1, . . . , z𝑘} :=
{ 𝑘∑︁

𝑖=1
𝑡𝑖z𝑖 : 𝑡1, . . . , 𝑡𝑘 ∈ [0,∞)

}
∪ {∞}.

This is the union of all circular arcs that pass through 0, z, ∞, for some z ∈
conv{z1, . . . , z𝑘}. In this case the circular arcs are rays. Extend this definition to
z1, . . . , z𝑘 ∈ R̂𝑛 by

cone{z1, . . . , z𝑘} := cone{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘} ∪ {∞}.

Definition 5.2 Given z1, . . . , z𝑘 ∈ R̂𝑛 and u ∈ R̂𝑛 distinct from them, define the cone
of z1, . . . , z𝑘 with respect to u by

coneu{z1, . . . , z𝑘} :=
{
u +

( 𝑘∑︁
𝑖=1

𝑡𝑖 (u + (z𝑖 − u)∗) − u
)∗

: 𝑡1, . . . , 𝑡𝑘 ∈ [0,∞)
}
∪ {u}.

This is the image under𝑇u of cone{𝑇u (z1), . . . , 𝑇u (z𝑘)}∪{∞}, and so it is u-convex.
Geometrically, coneu{z1, . . . , z𝑘} is the union of all circular arcs that pass through u −
u∗, z, u, for some z ∈ convu{z1, . . . , z𝑘}. Finally, for any u, z1, . . . , z𝑘 ∈ R̂𝑛, define

coneu{z1, . . . , z𝑘} := coneu{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} ∪ {u}.

Lemma 5.8 (Farkas’ Lemma II) Let u, z1, . . . , z𝑘 ∈ R̂𝑛 be distinct such that u ≠ ∞ and
let v ∈ R̂𝑛 ∖ {u}. Then, either there are numbers 𝑡1, . . . , 𝑡𝑘 ∈ [0,∞), such that

u + (v − u)∗ =
𝑘∑︁
𝑖=1

𝑡𝑖 (u + (z𝑖 − u)∗),

or there exist a ∈ R𝑛 and 𝛼, 𝛽 ∈ R, such that

𝛼⟨z𝑖 , z𝑖⟩ + ⟨z𝑖 , a⟩ + 𝛽 > 0, for all 𝑖 = 1, . . . , 𝑘,
𝛼⟨v, v⟩ + ⟨v, a⟩ + 𝛽 < 0, and (5.5)
𝛼⟨u, u⟩ + ⟨u, a⟩ + 𝛽 = 0.

Proof By Definition 5.2, the first condition is equivalent to v ∈ coneu{z1, . . . , z𝑘}.
Assume the latter is not the case, then Lemma 5.1 implies that there is a spherical domain
𝑆 that strongly separates {v} from coneu{z1, . . . , z𝑘} and has u on its boundary. Let
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18 Sh. Bhatt and H.S. Sendov

Figure 2: The cone in C, with respect to 𝑢, determined by the points 𝑧1, 𝑧2, and 𝑧3 (in orange) and
the boundary of their 𝑢-convex hull (in black).

𝛼⟨x, x⟩ + ⟨x, a⟩ + 𝛽 be the equation of the boundary of the spherical domain. As in
the proof of Lemma 5.6, {z1, . . . , z𝑘} and {v} lie in different connected components of
R𝑛 ∖ 𝜕𝑆 and u lies on the boundary, so we get the statements in (5.5). ■

Lemma 5.9 Let u, z1, . . . , z𝑘 ∈ R̂𝑛 be distinct such that u ≠ ∞ and let v ∈ R̂𝑛 ∖ {u}.
Then, either there are numbers 𝑡1, . . . , 𝑡𝑘 ∈ [0,∞), such that

u + (v − u)∗ =
𝑘∑︁
𝑖=1

𝑡𝑖 (u + (z𝑖 − u)∗),

or there exist a ∈ R𝑛 and 𝛼 ∈ R, such that

𝛼⟨z𝑖 , z𝑖⟩ + ⟨z𝑖 , a⟩ − 𝛼 ≥ 0, for all 𝑖 = 1, . . . , 𝑘,
𝛼⟨v, v⟩ + ⟨v, a⟩ − 𝛼 < 0, (5.6)
𝛼⟨u, u⟩ + ⟨u, a⟩ − 𝛼 = 0, and
2𝛼⟨u, u⟩ + ⟨u, a⟩ − 𝛼 = 0.
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Proof The first condition is equivalent to v ∈ coneu{z1, . . . , z𝑘}. Applying the trans-
form 𝑇u to the whole system, this is equivalent to 𝑇u (v) ∉ cone{𝑇u (z1), . . . , 𝑇u (z𝑘)}.
Assume this is not the case. Using the classical Farkas’ lemma, we get that there is a
half-space 𝐻 supporting cone{𝑇u (z1), . . . , 𝑇u (z𝑘)} at 0 and separating {𝑇u (v)} and
cone{𝑇u (z1), . . . , 𝑇u (z𝑘)}. Moreover, 𝐻 is such that v lies in the open complement of
𝐻. Applying 𝑇u to the boundary hyperplane 𝜕𝐻, we get that 𝑆 := 𝑇u (𝜕𝐻) is a sphere
separating {v} and coneu{z1, . . . , z𝑘} such that v ∉ 𝑆 and u, u − u∗ ∈ 𝑆. Let 𝛼⟨z, z⟩ +
⟨z, a⟩+𝛽 = 0 be the equation of 𝑆 and choose the signs such that𝛼⟨v, v⟩+⟨v, v⟩+𝛽 < 0.
Since 𝑆 is a separating sphere, we get that 𝛼⟨z𝑖 , z𝑖⟩ + ⟨z𝑖 , a⟩ + 𝛽 ≥ 0 for all 𝑖 = 1, . . . , 𝑘 .
Moreover, since 𝑆 passes through u, u − u∗, we get

𝛼⟨u, u⟩ + ⟨u, a⟩ + 𝛽 = 0 and
𝛼⟨u − u∗, u − u∗⟩ + ⟨u − u∗, a⟩ + 𝛽 = 0.

Simplifying the second equation gives

𝛼⟨u, u⟩ + ⟨u, a⟩ + 𝛽 − 2𝛼 + 𝛼

∥u∥2 − ⟨u∗, z⟩ = 0

2𝛼⟨u, u⟩ + ⟨u, a⟩ − 𝛼 = 0

Therefore concluding the proof. ■

6 Polar convexity with multiple poles

Problems in polar convexity involving a single pole can often be reduced to the setting
of classical convexity. However, as the examples above show, a set can be convex with
respect to multiple poles at once. In this section we look at how multiple poles interact
with each other. We start by defining what a convex hull with respect to multiple poles
is.

Definition 6.1 Given𝑈, 𝑍 ⊆ R̂𝑛 define the convex hull of 𝑍 with respect to𝑈, denoted
by conv𝑈 (𝑍), to be the smallest set in R̂𝑛 containing 𝑍 and convex with respect to each
u ∈ 𝑈.

If𝑈 = ∅ above, then conv𝑈 (𝑍) is simply 𝑍 and if 𝑍 = ∅, then conv𝑈 (𝑍) is also ∅.
Similar to (3.3), for u ∈ R𝑛, we have

𝑇u (conv𝑈 (𝑍)) = conv𝑇u (𝑈) (𝑇u (𝑍)).

It is natural to ask what the convex hull of a given set with respect to multiple poles
looks like. For example, given poles 𝑢,∞ and points 𝑧1, 𝑧2, 𝑧3 in the complex plane, their
{𝑢,∞}-convex hull would look as follows.

We are going to prove an inductive procedure for finding the convex hull of a
set, given finitely many poles. Before we do that, we recall the definition of a convex
polytope.

Definition 6.2 (Convex Polytope) A convex polytope in R𝑛 is the convex hull of a finite
number of points in R𝑛. A face of a polytope is an intersection of the polytope with a
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Figure 3: conv{𝑢,∞} {𝑧1, 𝑧2, 𝑧3}.

hyperplane, such that none of the relative interior points lie in the hyperplane. Faces
of a polytope are partially ordered by inclusion. Maximal faces are those that are not
contained in any other face of the polytope. A polytope 𝑃 ⊂ R𝑛 has full dimension if its
real span is R𝑛.

Definition 6.3 Given points z1, . . . , z𝑘 ∈ R̂𝑛 and a u ∈ R̂𝑛 distinct from them, define
the affine hull of z1, . . . , z𝑘 with respect to u to be

affu{z1, . . . , z𝑘} :=
{
u +

( 𝑘∑︁
𝑖=1

𝑡𝑖 (z𝑖 − u)∗
)∗

: 𝑡𝑖 ∈ R with
𝑘∑︁
𝑖=1

𝑡𝑖 = 1
}
∪ {u}.

If u ∈ {z1, . . . , z𝑘}, define affu{z1, . . . , z𝑘} := affu{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} ∪ {u}.

For example, the affine hull of one point is the union of the point and {u}. The affine
hull of two distinct points is the unique circle (or line) passing through them and the pole
u, including u. The affine hull of three distinct points is either a circle, if they together
with u are on a circle, or a two-dimensional sphere (or affine space), otherwise.

Using Definition 3.2, one can see that affu{z1, . . . , z𝑘} is the generalized ℓ-sphere,
with the smallest ℓ, that contains z1, . . . , z𝑘 and u. When u = ∞, then affu{z1, . . . , z𝑘}
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becomes the affine space, spanned by {z1, . . . , z𝑘} over R. We denote the latter simply
by aff{z1, . . . , z𝑘}.

Lemma 6.1 Let u, z1, . . . , z𝑘 ∈ R̂𝑛 be distinct, such that conv𝑢{z1, . . . , z𝑘} has non-
empty interior. Consider the family

L :=
{
𝑆 ⊂ R̂𝑛 : 𝑆 closed spherical domain, {z1, . . . , z𝑘} ⊂ 𝑆, u ∈ 𝜕𝑆

and affu{{z1, . . . , z𝑘 , u} ∩ 𝜕𝑆} = 𝜕𝑆
}
.

Then, L is finite, and we have

convu{z1, . . . , z𝑘} =
⋂
𝑆∈L

𝑆 − {u}

and

convu{u, z1, . . . , z𝑘} =
⋂
𝑆∈L

𝑆.

Proof Without loss of generality, we may assume u = ∞. Then conv{z1, . . . , z𝑘}
is a convex polytope of full dimension and can be written as the intersection of sup-
porting half-spaces corresponding to each of its maximal faces. Since the polytope
conv{z1, . . . , z𝑘} is of full dimension, there are clearly only finitely many half-spaces
𝐻, such that aff{{z1, . . . , z𝑘}∩𝜕𝐻} is a hyperplane. The second statement now follows
from Remark 2.4. ■

Remark 6.2 Notice that the set convu{z1, . . . , z𝑘} has empty interior if and only
if the polytope conv{𝑇u (z1), . . . , 𝑇u (z𝑘)} is not a full dimensional polytope. This
happens when the points 𝑇u (z1), . . . , 𝑇u (z𝑘) all lie in a hyperplane, that is, when
aff{𝑇u (z1), . . . , 𝑇u (z𝑘)} is not the full space. This is equivalent to saying that
affu{z1, . . . , z𝑘} is not the full space or that the points u, z1, . . . , z𝑘 all lie on a (𝑛 −
1)-sphere. ■

Let the points z1, . . . , z𝑘 ∈ R̂𝑛 be distinct and let u1, u2 ∈ R̂𝑛 be distinct (but not
necessarily distinct from z1, . . . , z𝑘 ). For 𝑖 ∈ {1, 2}, consider the following two families
of spherical domains:

S𝑖 :=
{
𝑆 ⊂ R̂𝑛 : 𝑆 closed spherical domain, {z1, . . . , z𝑘} ⊂ 𝑆, (6.1)

u𝑖 ∈ 𝜕𝑆 and {u1, u2} ⊂ cl(𝑆𝑐)}

and

L𝑖 :=
{
𝑆 ∈ S𝑖 : affu𝑖 {{z1, . . . , z𝑘 , u1, u2} ∩ 𝜕𝑆} = 𝜕𝑆

}
. (6.2)

Note that these families contain domains that are convex with respect to both u1 and
u2. Also note thatL𝑖 is necessarily a finite set. With that in mind, we have the following
result. Its proof can be found in the appendix.

Theorem 6.3 Let the points z1, . . . , z𝑘 ∈ R̂𝑛 be distinct and let u1, u2 ∈ R̂𝑛 be distinct (but
not necessarily distinct from z1, . . . , z𝑘 ). Suppose that not all of {z1, . . . , z𝑘 , u1, u2} lie on a
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(𝑛 − 1)-sphere. Then,

convu2 (convu1 {z1, . . . , z𝑘}) =
2⋂
𝑖=1

⋂
𝑆∈S𝑖

𝑆, (6.3)

where S𝑖 , 𝑖 = 1, 2, are the families of closed spherical domains defined in (6.1).

As a consequence of the above, we have the following convenient fact.

Corollary 6.4 For any distinct z1, . . . , z𝑘 ∈ R̂𝑛 and u1, u2 ∈ R̂𝑛 not necessarily distinct
from z1, . . . , z𝑘 , we have

conv{u1 ,u2 }{z1, . . . , z𝑘} = convu1 (convu2 {z1, . . . , z𝑘}) (6.4)
= convu2 (convu1 {z1, . . . , z𝑘}).

Proof Without loss of generality, assume u1 = ∞. If {z1, . . . , z𝑘} ∪ {u1, u2} lie on
a hyperplane, the sets in (6.4) will also all lie in this hyperplane. So we can restrict
to this hyperplane to assume that not all of {z1, . . . , z𝑘} ∪ {u1, u2} lie on a hyper-
plane. We prove the first equality, the second follows by symmetry. The containment
convu1 (convu2 {z1, . . . , z𝑘}) ⊆ conv{u1 ,u2 }{z1, . . . , z𝑘} follows from minimality in
Definition 6.1. We want to show the opposite inclusion

conv{u1 ,u2 }{z1, . . . , z𝑘} ⊆ convu1 (convu2 {z1, . . . , z𝑘}).

From Theorem 6.3, we see that convu1 (convu2 {z1, . . . , z𝑘}) =
⋂2

𝑖=1
⋂

𝑆∈S𝑖
𝑆. All the

domains 𝑆 lying in either S1 or S2 are convex with respect to both u1 and u2 by defini-
tion. It follows that convu1 (convu2 {z1, . . . , z𝑘}) is also convex with respect to both u1
and u2. Again by minimality in Definition 6.1, we get that

conv{u1 ,u2 }{z1, . . . , z𝑘} ⊆ convu1 (convu2 {z1, . . . , z𝑘}),

completing the proof. ■

Corollary 6.5 For any 𝑍 ⊂ R̂𝑛 and distinct u1, u2 ∈ R̂𝑛, we have

conv{u1 ,u2 } (𝑍) = convu1 (convu2 (𝑍)) = convu2 (convu1 (𝑍)).

Proof We prove the first equality, the other one follows by symmetry. The inclusion

convu1 (convu2 (𝑍)) ⊆ conv{u1 ,u2 } (𝑍)

follows by minimality. To see the other inclusion, it is sufficient to prove that
convu1 (convu2 (𝑍)) is u2-convex. Let x1, x2 ∈ convu1 (convu2 (𝑍)), then by repeated
application of Carathéodory’s theorem, we get x1, x2 ∈ convu1 {v1, . . . , vℓ } for some
v1, . . . , vℓ ∈ convu2 (𝑍). By Carathéodory’s theorem again, we get that x1, x2 ∈
convu1 (convu2 {z1, . . . , z𝑘}) for some z1, . . . , z𝑘 ∈ 𝑍 , that may be assumed distinct. By
Corollary 6.4, convu1 (convu2 {z1, . . . , z𝑘}) is u2-convex, so

arcu2 [x1, x2] ⊆ convu1 (convu2 {z1, . . . , z𝑘}) ⊆ convu1 (convu2 (𝑍)).
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Therefore, the set convu1 (convu2 (𝑍)) is convex with respect to both u1 and u2 and
contains 𝑍 . So, by minimality

conv{u1 ,u2 } (𝑍) ⊆ convu1 (convu2 (𝑍)),

concluding the proof. ■

Corollary 6.6 Given 𝑍 ⊆ R̂𝑛 and distinct points u1, . . . , u𝑚 in R̂𝑛, we have

conv{u1 ,...,u𝑚 } (𝑍) = convu𝑚 (conv{u1 ,...,u𝑚−1 } (𝑍)).

Moreover, the polar convex hull on the left does not depend on the order in which we take the
polar convex hulls on the right.

Proof As before, by minimality, we have the following inclusion

convu𝑚 (conv{u1 ,...,u𝑚−1 } (𝑍)) ⊆ conv{u1 ,...,u𝑚 } (𝑍).

So it is enough to prove that convu𝑚 (conv{u1 ,...,u𝑚−1 } (𝑍)) is convex with respect to all
of u𝑖 , 𝑖 = 1, . . . , 𝑚. We use induction on the number of poles, 𝑚. Note that the base
case, 𝑚 = 2, is Corollary 6.5. Assume the corollary to be true for 𝑚 − 1 poles, then by
the induction hypothesis

conv{u1 ,...,u𝑚−1 } (𝑍) = convu𝑚−1 (conv{u1 ,...,u𝑚−2 } (𝑍)).

Taking the u𝑚 convex hull and using Corollary 6.5 we get

convu𝑚 (conv{u1 ,...,u𝑚−1 } (𝑍)) = convu𝑚 (convu𝑚−1 (conv{u1 ,...,u𝑚−2 } (𝑍)))
= convu𝑚−1 (convu𝑚 (conv{u1 ,...,u𝑚−2 } (𝑍))).

By a similar reasoning, we may replace u𝑚−1 by any other u𝑖 for 𝑖 = 1, . . . , 𝑚 − 1.
Therefore,we conclude that convu𝑚 (conv{u1 ,...,u𝑚−1 } (𝑍)) is indeed convexwith respect
to all the u𝑖 ’s, so the corollary holds. ■

Let the points z1, . . . , z𝑘 ∈ R̂𝑛 be distinct and let u1, . . . , u𝑚 ∈ R̂𝑛 be distinct (but
not necessarily distinct from z1, . . . , z𝑘 ). To shorten the notation in the proof of the next
theorem, we define

𝑍𝑘 := {z1, . . . , z𝑘} and𝑈𝑚 := {u1, . . . , u𝑚}.

Analogous to the families considered in (6.2), we consider the following families of
spherical domains, for 𝑖 ∈ {1, . . . , 𝑚}:

L𝑖 :=
{
𝑆 ⊂ R̂𝑛 : 𝑆 closed spherical domain, 𝑍𝑘 ⊂ 𝑆, u𝑖 ∈ 𝜕𝑆 and (6.5)

𝑈𝑚 ⊂ cl(𝑆𝑐) and affu𝑖 {(𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝑆} = 𝜕𝑆}.

In words, the domains in L𝑖 are u 𝑗-convex, for all 𝑗 = 1, . . . , 𝑚, with the additional
requirement that u𝑖 ∈ 𝜕𝑆. Moreover, the domains inL𝑖 are determined by some of the
points 𝑍𝑘 ∪𝑈𝑚.

Theorem 6.7 Let the points z1, . . . , z𝑘 ∈ R̂𝑛, 𝑛 ≥ 2, be distinct and let the points
u1, . . . , u𝑚 ∈ R̂𝑛, 𝑚 ≥ 2, be distinct (but not necessarily distinct from z1, . . . , z𝑘 ), such
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that conv𝑈𝑚
(𝑍𝑘) has non-empty interior. Then the boundary of conv𝑈𝑚

(𝑍𝑘) is made up of
pieces of the boundaries of closed spherical domains 𝑆 with the following properties:

(a) Each 𝑆 lies in L𝑖 , for some 𝑖 = 1, . . . , 𝑚,
(b) Each piece of the boundary is of the form conv𝜕𝑆∩𝑈𝑚

(𝜕𝑆 ∩ 𝑍𝑘), and
(c) We have

conv𝑈𝑚
(𝑍𝑘) =

𝑚⋂
𝑖=1

⋂
𝑆∈L𝑖

𝑆. (6.6)

In other words, given a point z ∉ conv𝑈𝑚
(𝑍𝑘), there exists a spherical domain 𝑆 ∈ L𝑖 ,

such that z ∉ 𝑆, for some 𝑖 = 1, . . . , 𝑚.

Proof If conv𝑈𝑚
(𝑍𝑘) is the entire R̂𝑛, then the familiesL𝑖 are empty and the theorem

holds, so assume that this is not the case. The proof is by an induction on the dimen-
sion of the ambient space, 𝑛. When the dimension is 𝑛 = 2, the theorem is simply [11,
Theorem 5.2]. Suppose that 𝑛 ≥ 3 and the result holds when the dimension of the space
is 𝑛 − 1 or lower. This assumption means that the result holds in any subspace or affine
space of R̂𝑛 or dimension 𝑛 − 1 or on any sphere in R̂𝑛 of dimension 𝑛 − 1. To see the
latter, simply send a point of the said sphere to∞ using a Möbius transformation.

We begin with the following containments⋃
𝑆∈L 𝑗

𝑗=1,...,𝑚

conv𝜕𝑆∩𝑈𝑚
(𝜕𝑆 ∩ 𝑍𝑘) ⊆ conv𝑈𝑚

(𝑍𝑘) ⊆
𝑚⋂
𝑗=1

⋂
𝑆∈L 𝑗

𝑆, (6.7)

where the inclusions follow by theminimality of the convex hulls. To conclude the proof
it is sufficient to show that⋃

𝑆∈L 𝑗

𝑗=1,...,𝑚

conv𝜕𝑆∩𝑈𝑚
(𝜕𝑆 ∩ 𝑍𝑘) = 𝜕

( 𝑚⋂
𝑗=1

⋂
𝑆∈L 𝑗

𝑆

)
. (6.8)

Indeed, assume (6.8) holds. Without loss of generality, assume that u𝑚 = ∞ or else apply
a Möbius transformation to R̂𝑛 that sends u𝑚 to ∞. Then,

⋂𝑚
𝑗=1

⋂
𝑆∈L 𝑗

𝑆 is a closed
convex set and so it is equal to the convex hull of its boundary. Taking the convex hull
of all parts in (6.7), we have

conv
( ⋃

𝑆∈L 𝑗

𝑗=1,...,𝑚

conv𝜕𝑆∩𝑈𝑚
(𝜕𝑆 ∩ 𝑍𝑘)

)
⊆ conv𝑈𝑚

(𝑍𝑘) ⊆
𝑚⋂
𝑗=1

⋂
𝑆∈L 𝑗

𝑆

= conv
(
𝜕

( 𝑚⋂
𝑗=1

⋂
𝑆∈L 𝑗

𝑆

))
= conv

( ⋃
𝑆∈L 𝑗

𝑗=1,...,𝑚

conv𝜕𝑆∩𝑈𝑚
(𝜕𝑆 ∩ 𝑍𝑘)

)
.

Thus, we have equalities throughout, and we are done.
For the remainder of the proofwe show (6.8). Since

⋂𝑚
𝑗=1

⋂
𝑆∈L 𝑗

𝑆 is the intersection
of spherical domains, the boundaries of such domains are the sole contributors to the
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boundary of
⋂𝑚

𝑗=1
⋂

𝑆∈L 𝑗
𝑆. To see that each domain 𝑆 contributes exactly a piece of the

form conv𝜕𝑆∩𝑈𝑚
(𝜕𝑆 ∩ 𝑍𝑘), fix some 𝑆 ∈ L𝑖 and restrict to its boundary 𝜕𝑆. Let

{u′1, . . . , u′𝑚′ } := 𝜕𝑆 ∩𝑈𝑚.

Recalling Definition 3.3, define the following families of spherical domains

L′
𝑗 :=

{
𝑆′ ⊂ 𝜕𝑆 : 𝑆′ closed spherical domain, 𝜕𝑆 ∩ 𝑍𝑘 ⊂ 𝑆′, u′𝑗 ∈ 𝜕𝑆′,

𝜕𝑆 ∩𝑈𝑚 ⊂ cl(𝑆′𝑐) and affu′
𝑗
{𝜕𝑆 ∩ (𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝑆′} = 𝜕𝑆′

}
,

where in this definition, by 𝜕𝑆′ we understand the boundary of 𝑆′ relative to 𝜕𝑆, and by
𝑆′𝑐 we understand the complement of 𝑆′ relative to 𝜕𝑆.

Since 𝜕𝑆 is a dimension 𝑛 − 1 ambient space, the theorem holds by the induction
hypothesis, so

conv𝜕𝑆∩𝑈𝑚
(𝜕𝑆 ∩ 𝑍𝑘) =

𝑚′⋂
𝑗=1

⋂
𝑆′∈L′

𝑗

𝑆′. (6.9)

In the next two paragraphs we explain how each domain 𝑆′ ∈ L′
𝑗
can be extended to

a domain 𝑆′′ ∈ L 𝑗 , such that 𝑆′′ ∩ 𝜕𝑆 = 𝑆′. Without loss of generality, we may assume
that both L′

𝑗
and L 𝑗 correspond to the same pole u 𝑗 , that is u′𝑗 = u 𝑗 for 𝑗 = 1, . . . , 𝑚′

(or else we just re-lable u1, . . . , u𝑚 so that u′1, . . . , u
′
𝑚′ are the first 𝑚′ of them).

If L′
𝑗
are all empty, then

⋂𝑚′
𝑗=1

⋂
𝑆′∈L′

𝑗
𝑆′ = 𝜕𝑆. So, (6.9) becomes conv𝜕𝑆∩𝑈𝑚

(𝜕𝑆 ∩
𝑍𝑘) = 𝜕𝑆 and then (6.7) shows that

𝜕𝑆 ⊆ conv𝑈𝑚
(𝑍𝑘) ⊆

𝑚⋂
𝑗=1

⋂
𝑆∈L 𝑗

𝑆.

In this case, since there is at least one point in 𝑈𝑚 ∪ 𝑍𝑘 not lying on 𝜕𝑆, and 𝑆 ∈ L𝑖

implies that affu𝑖 {(𝑍𝑘 ∪ 𝑈𝑚) ∩ 𝜕𝑆} = 𝜕𝑆, we conclude that conv𝑈𝑚
(𝑍𝑘) = 𝑆. If L′

𝑗

are not all empty, then fix 𝑆′ ∈ L′
𝑗
and assume that u 𝑗 = ∞ or else apply a Möbius

transformation to R̂𝑛 that sends u 𝑗 to ∞. (Abusing notation we keep the names 𝑆 and
𝑆′ after that transformation.) Since u 𝑗 ∈ 𝜕𝑆′ ⊂ 𝜕𝑆, 𝜕𝑆′ becomes a hyperplane in 𝜕𝑆,
which is our ambient space of dimension 𝑛 − 1. (Note that 𝜕𝑆 becomes a hyperplane in
R̂𝑛.) By definition 𝑆′ contains the points 𝜕𝑆 ∩ 𝑍𝑘 and separates them from the points
𝜕𝑆∩𝑈𝑚, relative to 𝜕𝑆. Since 𝜕𝑆 separates 𝑍𝑘 and𝑈𝑚, the points 𝑍𝑘 \ 𝜕𝑆 and𝑈𝑚 \ 𝜕𝑆
are strictly on different sides of 𝜕𝑆. Thus, 𝑆′ can be extended to a half-space 𝐻 in R̂𝑛,
that contains the points 𝑍𝑘 and separates them from the points𝑈𝑚. (To obtain this initial
half space 𝐻 just rotate slightly the half-space 𝑆 around 𝜕𝑆′.) That is, the half-space 𝐻
is such that

𝑈𝑚 ⊂ cl(𝐻𝑐) and conv𝑈𝑚
(𝑍𝑘) ⊂ 𝐻.

We show now that 𝐻 can be chosen in such a way that

affu 𝑗
{(𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝐻} = 𝜕𝐻.

In this way we have 𝐻 ∈ L 𝑗 and by construction 𝐻 ∩ 𝜕𝑆 = 𝑆′.
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If dim affu 𝑗
{(𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝐻} = 𝑛 − 1, then we are done. So assume

dim affu 𝑗
{(𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝐻} ≤ 𝑛 − 2. (6.10)

Since 𝜕𝑆 ∩ (𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝑆′ ⊆ (𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝐻, we have that

𝜕𝑆′ = affu 𝑗
{𝜕𝑆 ∩ (𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝑆′} ⊂ affu 𝑗

{(𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝐻}.

But the dimension of 𝜕𝑆′ is 𝑛 − 2, so we conclude that

affu 𝑗
{(𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝐻} = 𝜕𝑆′

and (6.10) holds with equality. Rotate 𝜕𝐻 around 𝜕𝑆′ until it hits a point in (𝑍𝑘∪𝑈𝑚)∖
𝜕𝑆. (Note that the latter set difference is not empty since otherwise conv𝑈𝑚

(𝑍𝑘) ⊂
𝜕𝑆, contradicting the assumption that the polar convex hull has non-empty interior.) It
should be clear now that after the rotation, the dimension of affu 𝑗

{(𝑍𝑘 ∪𝑈𝑚) ∩ 𝜕𝐻} is
𝑛 − 1. Finally, let 𝑆′′ be the inverse image of 𝐻, under the Möbius transformation that
sent u 𝑗 to∞.

By (6.9), we have that for each point x ∈ 𝜕𝑆 outside of conv𝜕𝑆∩𝑈𝑚
(𝜕𝑆∩ 𝑍𝑘) there is

a spherical domain 𝑆′ ∈ L′
𝑗
, for some 𝑗 = 1, . . . , 𝑚, that excludes x, relative to 𝜕𝑆. By

the above, 𝑆′ can be extended to an 𝑆′′ ∈ L 𝑗 that satisfies 𝑆′′ ∩ 𝜕𝑆 = 𝑆′, and hence 𝑆′′
excludes x.

Returning to (6.8), take a point x ∈ 𝜕
( ⋂𝑚

𝑗=1
⋂

𝑆∈L 𝑗
𝑆
)
. There is an 𝑆 ∈ L𝑖 for

some 𝑖 = 1, . . . , 𝑚 such that x ∈ 𝜕𝑆. By the above observation, we need to have x ∈
conv𝜕𝑆∩𝑈𝑚

(𝜕𝑆 ∩ 𝑍𝑘). So x belongs to the left-hand side of (6.8). Conversely, if x is
in the left-hand side of (6.8), then x ∈ 𝜕𝑆 for some 𝑆 ∈ L𝑖 , 𝑖 = 1, . . . , 𝑚. By (6.7),
x ∈ ⋂𝑚

𝑗=1
⋂

𝑆∈L 𝑗
𝑆, so x must be on the boundary of that intersection. The proof of

(6.8) is completed. ■

Remark 6.8 Notice, in the theorem above, that if for some 𝑆 ∈ L𝑖 wehave 𝜕𝑆∩𝑍𝑘 = ∅,
then the boundary piece conv𝜕𝑆∩𝑈𝑚

(𝜕𝑆 ∩ 𝑍𝑘) contributed by it is also empty. This
means that conv𝑈𝑚

(𝑍𝑘) is in the interior of the domain 𝑆. Therefore, such an 𝑆 can
be safely ignored from the intersection (c) to obtain the same result. So, in view of
Theorem 6.7 we may write

conv𝑈𝑚
(𝑍𝑘) =

𝑚⋂
𝑖=1

⋂
𝑆∈L𝑖

𝜕𝑆∩𝑍𝑘≠∅

𝑆. (6.11)

That is, the families L𝑖 are not minimal, and contain more spherical domains than
needed. ■

Remark 6.9 Note that if conv𝑈𝑚
(𝑍𝑘) has non-empty interior, then it is necessar-

ily connected, for 𝑚 ≥ 2. In this case, the pieces of the boundary, as described in
Theorem 6.7 (b), that matter are the ones that are exactly of co-dimension one. Indeed,
if for some spherical domain 𝑆 ∈ L𝑖 , 𝜕𝑆 ∩ 𝑍𝑘 = {z 𝑗 } for some 𝑗 = 1, . . . , 𝑘 , then the
boundary piece contributed by it is the singleton {z 𝑗 }. Since this is a closed connected
subset of R̂𝑛, the boundary point cannot be isolated. By Theorem 6.7, the boundary

2024/11/06 15:04



On Polar Convexity in Finite-Dimensional Euclidean Spaces 27

pieces are finitely many. So, there is a boundary piece that intersects every neighbour-
hood of z 𝑗 (since every point in R̂𝑛 has a countable basis). Let 𝑆′ ∈ L𝑖′ be the spherical
domain that generates this boundary piece. Then, because 𝜕𝑆′ is closed, we must have
z 𝑗 ∈ 𝜕𝑆′ and thus z 𝑗 is in the boundary piece generated by 𝑆′. Therefore, we may also
ignore those spherical domains 𝑆 ∈ L𝑖 such that |𝜕𝑆 ∩ 𝑍𝑘 | < 2. That is,

conv𝑈𝑚
(𝑍𝑘) =

𝑚⋂
𝑖=1

⋂
𝑆∈L𝑖

|𝜕𝑆∩𝑍𝑘 | ≥2

𝑆. (6.12)

We may not be able to ignore more spherical domains without additional hypotheses. If
|𝜕𝑆 ∩ 𝑍𝑘 | = 2, then the boundary piece generated by 𝑆 may contribute non-trivially to
the boundary of the𝑈𝑚-convex hull depending on the position andnumber of poles. ■

Remark 6.10 If conv𝑈𝑚
(𝑍𝑘) has empty interior, then it is contained in some sphere.

We may consider that sphere to be our new ambient space. We can do this repeatedly,
until we have an ambient space, such that conv𝑈𝑚

(𝑍𝑘) has non-empty interior relative
to it. In this ambient space, we can apply Theorem 6.7 to express it as an intersection of
spherical domains. ■

Recall Definition 2.4 of the pole set associated to a subset 𝑍 of R̂𝑛. Because of the
above description of conv𝑈𝑚

(𝑍𝑘) as intersection of finite number of spherical domains,
we obtain the following corollary.

Corollary 6.11 Let the points z1, . . . , z𝑘 ∈ R̂𝑛 be distinct and let u1, . . . , u𝑚 ∈ R̂𝑛, 𝑚 ≥
2, be distinct (but not necessarily distinct from z1, . . . , z𝑘 ), such that conv𝑈𝑚

(𝑍𝑘) has non-
empty interior. Then

conv𝑍𝑘
(𝑈𝑚) ⊆ P(conv𝑈𝑚

(𝑍𝑘)) =
𝑚⋂
𝑖=1

⋂
𝑆∈L𝑖

|𝜕𝑆∩𝑍𝑘 | ≥2

cl(𝑆𝑐). (6.13)

Proof For any 𝑆 ∈ L𝑖 , with |𝜕𝑆 ∩ 𝑍𝑘 | ≥ 2, we have𝑈𝑚 ⊂ cl(𝑆𝑐) and 𝑍𝑘 ∩ 𝑆𝑐 = ∅.
So cl(𝑆𝑐) is convex with respect to all z 𝑗 , and we get

conv𝑍𝑘
(𝑈𝑚) ⊆

𝑚⋂
𝑖=1

⋂
𝑆∈L𝑖

|𝜕𝑆∩𝑍𝑘 | ≥2

cl(𝑆𝑐).

Next, suppose v does not belong to the right-hand side of (6.13). Then, v ∈ int(𝑆)
for some 𝑆 ∈ L𝑖 with |𝜕𝑆 ∩ 𝑍𝑘 | ≥ 2, say z1, z2 ∈ 𝜕𝑆. Then, arcv [z1, z2] ⊈ 𝑆, so by
(6.12), v ∉ P(conv𝑈𝑚

(𝑍𝑘)). Therefore,

P(conv𝑈𝑚
(𝑍𝑘)) ⊆

𝑚⋂
𝑖=1

⋂
𝑆∈L𝑖

|𝜕𝑆∩𝑍𝑘 | ≥2

cl(𝑆𝑐).
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Finally, for any v in the right-hand side of (6.13) and any 𝑆 ∈ L𝑖 with |𝜕𝑆∩ 𝑍𝑘 | ≥ 2,
we have v ∉ int(𝑆) and so 𝑆 is v-convex. Therefore, the right-hand side of (6.12) is
v-convex and so we conclude that v ∈ P(conv𝑈𝑚

(𝑍𝑘)). Thus
𝑚⋂
𝑖=1

⋂
𝑆∈L𝑖

|𝜕𝑆∩𝑍𝑘 | ≥2

cl(𝑆𝑐) ⊆ P(conv𝑈𝑚
(𝑍𝑘)).

This completes the proof. ■

The next example extends Example 4.1(f) from [11].

Example 6.12 Consider spherical domains 𝑆1, . . . , 𝑆𝑘 ⊂ R̂𝑛, such that 𝑆𝑖 ∩ 𝑆 𝑗 has
non-empty interior and 𝑆𝑖 ⊈ 𝑆 𝑗 for all 𝑖 ≠ 𝑗 . For any v ∈ {0, 1}𝑘 , define

𝐴v := {x ∈ R̂𝑛 : x ∈ 𝑆𝑖 if v𝑖 = 1 and x ∈ cl(𝑆𝑐𝑖 ) if v𝑖 = 0 for 𝑖 = 1, . . . , 𝑘}.

Let e := [1, . . . , 1] ∈ {0, 1}𝑘 . Then 𝐴e−v ⊆ P(𝐴v) and

𝐴e−v = P(𝐴v), whenever |𝜕𝑆𝑖 ∩ 𝜕𝐴v | ≥ 2 for each 𝑖 = 1, . . . , 𝑘 . (6.14)

Example 3.8 shows that P(𝑆𝑖) = cl(𝑆𝑐
𝑖
) and vice versa. Therefore, it is clear that

𝐴e−v ⊆ P(𝐴v). However the equality does not hold in general as Figure 5 shows.
Let the condition on the right-hand side of (6.14) hold and fix a point u ∉ 𝐴e−v.

Then, there is some 𝑖, such that u ∉ cl(𝑆𝑐
𝑖
) (the case when u ∉ 𝑆𝑖 is anaologous), but

𝐴v ⊂ 𝑆𝑖 . Such an 𝑆𝑖 would not be convex with respect to u: if {x1, x2} ⊂ 𝜕𝑆𝑖 ∩ 𝜕𝐴v,
then arcu [x1, x2] ⊈ 𝑆𝑖 . Since 𝐴v ⊂ 𝑆𝑖 , this implies that 𝐴v cannot be convex with
respect to u. Therefore, 𝐴e−v ⊇ P(𝐴v), establishing (6.14). ■

Theorem 6.13 For any 𝑍 ⊆ R̂𝑛, we have 𝑍 ⊆ P(P(𝑍)).

Proof Note that if 𝑍 is either R̂𝑛, ∅, or a singleton, then P(𝑍) = R̂𝑛 and so
P(P(𝑍)) = R̂𝑛. Similarly, if P(𝑍) is a singleton, then P(P(𝑍)) = R̂𝑛.

Thus, we may assume that both 𝑍 and P(𝑍) contain at least two points. We need to
show that if z1 ∈ 𝑍 and if u1, u2 ∈ P(𝑍), then arcz1 [u1, u2] ⊆ P(𝑍). Assume that
the points z1, u1, and u2 are distinct, otherwise the inclusion arcz1 [u1, u2] ⊆ P(𝑍) is
trivial. In other words, one has to show that any v ∈ arcz1 [u1, u2] is a pole for 𝑍 , that
is, for any z2, z3 ∈ 𝑍 , we have arcv [z2, z3] ⊆ 𝑍 . If z2, z3 happen to be on the circle
determined by z1, u1, u2, and v, then it is easy to see that arcv [z2, z3] ⊆ 𝑍 by consid-
ering several cases (we omit the details). Otherwise, by Remark 6.10 we may restrict to
a smaller dimensional ambient space that has dimension at least two and where the set
conv{u1 ,u2 }{z1, z2, z3} has non-empty interior. By Corollary 6.11, we have

v ∈ arcz1 [u1, u2] ⊆ conv{z1 ,z2 ,z3 }{u1, u2} ⊆ P(conv{u1 ,u2 }{z1, z2, z3}).

This shows the first inclusion in

arcv [z2, z3] ⊆ conv{u1 ,u2 }{z1, z2, z3} ⊆ 𝑍,
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Figure 4: Illustrating Example 6.12 when 𝐴[0,0,1] = P(𝐴[1,1,0] ).

Figure 5: Illustrating Example 6.12 when 𝐴[0,0,1,1] ⊊ P(𝐴[1,1,0,0] ).

while the second inclusion follows since u1, u2 ∈ P(𝑍). Finally, since z2, z3 ∈ 𝑍 were
arbitrary, we get that v ∈ P(𝑍). ■

Remark 6.14 As a consequence of the above theorem, given any set 𝑍 ⊆ R̂𝑛 we get two
increasing chains of sets

𝑍 ⊆ P(P(𝑍)) ⊆ · · · ⊆ P2𝑛 (𝑍) ⊆ · · · ,

and

P(𝑍) ⊆ P(P(P(𝑍))) ⊆ · · · ⊆ P2𝑛+1 (𝑍) ⊆ · · · .
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Let

𝐴 :=
∞⋃
𝑖=0

P2𝑖 (𝑍) and 𝐵 :=
∞⋃
𝑖=0

P2𝑖+1 (𝑍).

Then we get that P(𝐴) ⊇ 𝐵 and P(𝐵) ⊇ 𝐴. Indeed, for any z1, z2 ∈ 𝐴 and u ∈ 𝐵,
there is an integer 𝑘 , such that z1, z2 ∈ P2𝑘 (𝑍) and u ∈ P2𝑘+1 (𝑍). This shows that
arcu [z1, z2] ⊆ P2𝑘 (𝑍) ⊆ 𝐴. ■

Open Problem Characterize the pairs of sets (𝐴, 𝐵) in R̂𝑛, such that P(𝐴) ⊇ 𝐵 and
P(𝐵) ⊇ 𝐴. Moreover, characterize the pairs of sets (𝐴, 𝐵) in R̂𝑛, with the stronger
conditions that P(𝐴) = 𝐵 and P(𝐵) = 𝐴. ■

To conclude, we express Corollary 6.4 algebraically in the special case

convu (conv{z1, . . . , z𝑘}) = conv(convu{z1, . . . , z𝑘}). (6.15)

Doing so gives us the following identities.

Corollary 6.15 Given distinct points u, z1, . . . , z𝑘 ∈ R𝑛−1, and 𝑡, 𝛼 𝑗 , 𝛽 𝑗 ∈ [0, 1] , for
1 ≤ 𝑗 ≤ 𝑘 , such that

𝑘∑︁
𝑗=1

𝛼 𝑗 =

𝑘∑︁
𝑗=1

𝛽 𝑗 = 1,

there exist 𝛾𝑖 , 𝛿𝑖, 𝑗 ∈ [0, 1] , for 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑘 , such that

𝑛∑︁
𝑖=1

𝛾𝑖 =

𝑘∑︁
𝑗=1

𝛿𝑖, 𝑗 = 1 for all 1 ≤ 𝑖 ≤ 𝑛

and satisfying(
𝑡

( 𝑘∑︁
𝑖=1

𝛼𝑖 (z𝑖 − u)
)∗

+ (1 − 𝑡)
( 𝑘∑︁
𝑖=1

𝛽𝑖 (z𝑖 − u)
)∗)∗

=

𝑛∑︁
𝑖=1

𝛾𝑖

( 𝑘∑︁
𝑗=1

𝛿𝑖, 𝑗 (z 𝑗 − u)∗
)∗
.

Proof Clearly, the points
∑𝑘

𝑖=1 𝛼𝑖z𝑖 ,
∑𝑘

𝑖=1 𝛽𝑖z𝑖 are in conv{z1, . . . , z𝑘}. For any 𝑡 ∈
[0, 1] , we have

u +
(
𝑡 (

𝑘∑︁
𝑖=1

𝛼𝑖z𝑖 − u)∗ + (1 − 𝑡) (
𝑘∑︁
𝑖=1

𝛽𝑖z𝑖 − u)∗
)∗

∈ convu (conv{z1, . . . , z𝑘})

= conv(convu{z1, . . . , z𝑘}).

By Carathéodory’s theorem there are points x1, . . . , x𝑛 ∈ convu{z1, . . . , z𝑘} and
parameters 𝛾1, . . . , 𝛾𝑛 ∈ [0, 1] , such that∑𝑛

𝑖=1 𝛾𝑖 = 1 and

u +
(
𝑡 (

𝑘∑︁
𝑖=1

𝛼𝑖z𝑖 − u)∗ + (1 − 𝑡) (
𝑘∑︁
𝑖=1

𝛽𝑖z𝑖 − u)∗
)∗

=

𝑛∑︁
𝑖=1

𝛾𝑖x𝑖 . (6.16)
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Since x𝑖 ∈ convu{z1, . . . , z𝑘}, there must be parameters 𝛿𝑖,1, . . . , 𝛿𝑖,𝑘 such that∑𝑘
𝑗=1 𝛿𝑖, 𝑗 = 1 and

x𝑖 = u +
( 𝑘∑︁
𝑗=1

𝛿𝑖, 𝑗 (z 𝑗 − u)∗
)∗
, for all 𝑖 = 1, . . . , 𝑘 . (6.17)

Substituting the equations (6.17) back into (6.16) and simplifying gives the stated
identity. ■

In particular, when 𝑛 = 3, we get an algebraic relationship in the complex plane.

Corollary 6.16 Given distinct points u, z1, . . . , z𝑘 ∈ C, and 𝑡, 𝛼 𝑗 , 𝛽 𝑗 ∈ [0, 1] , for 1 ≤
𝑗 ≤ 𝑘 , such that

𝑘∑︁
𝑗=1

𝛼 𝑗 =

𝑘∑︁
𝑗=1

𝛽 𝑗 = 1,

there exist 𝛾𝑖 , 𝛿𝑖, 𝑗 ∈ [0, 1] , for 1 ≤ 𝑖 ≤ 3 and 1 ≤ 𝑗 ≤ 𝑘 , such that

3∑︁
𝑖=1

𝛾𝑖 =

𝑘∑︁
𝑗=1

𝛿𝑖, 𝑗 = 1 for all 1 ≤ 𝑖 ≤ 3

and satisfying

1
𝑡∑𝑘

𝑖=1 𝛼𝑖 (z𝑖−u)
+ 1−𝑡∑𝑘

𝑖=1 𝛽𝑖 (z𝑖−u)
=

𝛾1∑𝑘
𝑗=1

𝛿1, 𝑗
z 𝑗−u

+ 𝛾2∑𝑘
𝑗=1

𝛿2, 𝑗
z 𝑗−u

+ 𝛾3∑𝑘
𝑗=1

𝛿3, 𝑗
z 𝑗−u

.

7 Conclusions

In conclusion, the paper aims to establishes the foundations of a theory of polar con-
vexity in the case of finite-dimensional Euclidean spaces to build on. Polar convexity,
as a generalization of classical convexity, enjoys many unique properties, the Duality
Theorem for example, that could not be formulated in the classical setting. These prop-
erties, however, are still applicable to the classical setting and we hope that these will be
exploited to approach many classical problems.

The theory is still in its infancy. One could ask what are the polar convex functions
and if they have applications to optimization problems, that parallel those of classical
convex functions. Section 6 looks at convexification of sets with respect to multiple
poles. These sets are convex, in the classical sense, if one of the poles is∞. Thus, if a set
is convex with respect tomultiple poles it is natural to ask what additional properties do
these super convex sets have. Also in Section 6 we give a description of the convex hull
of finitely many points with respect to finitely many poles. It is natural to ask for similar
descriptions when one or both of these sets are infinite. Concrete answers to such ques-
tions are not known even in the case of nicely behaved infinite sets and may be a topic
of further research.
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Appendix

This section contains deferred proofs and results that may distract the reader from the
main development.

Proof of Lemma 2.1. By definition, we have

u +
(
𝑡 (z1−u)∗ + (1 − 𝑡) (z2 − u)∗

)∗
= u + 𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗

∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2

= u
(
1 − 𝑡/∥z1 − u∥2 + (1 − 𝑡)/∥z2 − u∥2

∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2
)

(7.1)

+ 𝑡z1/∥z1 − u∥2 + (1 − 𝑡)z2/∥z2 − u∥2
∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2 .

We look at the two terms of the last displayed expression separately. For the first term,
we have

u
(
1− 𝑡/∥z1 − u∥2 + (1 − 𝑡)/∥z2 − u∥2

∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2
)

= u
∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2 − 𝑡/∥z1 − u∥2 − (1 − 𝑡)/∥z2 − u∥2

∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2

=
u
𝐷

(
∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2∥z1 − u∥2∥z2 − u∥2

− 𝑡∥z2 − u∥2 − (1 − 𝑡)∥z1 − u∥2
)
,

where

𝐷 := ∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2∥z1 − u∥2∥z2 − u∥2.

In the numerator, expand ∥𝑡 (z1−u)∗ + (1− 𝑡) (z2−u)∗∥2 as a dot product andmultiply
throughout by ∥z1 − u∥2∥z2 − u∥2. After elementary simplifications, we arrive at

u
𝐷

(
− 𝑡 (1 − 𝑡)∥z2 − u∥2 − 𝑡 (1 − 𝑡)∥z1 − u∥2 + 𝑡 (1 − 𝑡)⟨z1 − u, z2 − u⟩

+ 𝑡 (1 − 𝑡)⟨z2 − u, z1 − u⟩
)

=
u
𝐷

(
− 𝑡 (1 − 𝑡)∥z1 − z2∥2

)
= u

−𝑡 (1 − 𝑡)∥z1 − z2∥2∥z1 − u∥2∥z2 − u∥2
∥𝑡 (z1 − u)∥z2 − u∥2 + (1 − 𝑡) (z2 − u)∥z1 − u∥2∥2

= u
𝑂 (∥u∥4)
∥u∥6 .

Now we look at the second term in (7.1) and multiply its numerator and denominator
by ∥u∥2. Then, it can be developed as

𝑡z1/∥z1 − u∥2 + (1 − 𝑡)z2/∥z2 − u∥2
∥𝑡 (z1 − u)∗ + (1 − 𝑡) (z2 − u)∗∥2 =

𝑡z1



 z1
∥u∥ −

u
∥u∥




−2 + (1 − 𝑡)z2



 z2
∥u∥ −

u
∥u∥




−2
∥𝑡
( z1
∥u∥ −

u
∥u∥

)∗ + (1 − 𝑡)
( z2
∥u∥ −

u
∥u∥

)∗∥2 .

2024/11/06 15:04



On Polar Convexity in Finite-Dimensional Euclidean Spaces 33

Thus, taking the limit as ∥u∥ → ∞, the first term in (7.1) converges to 0, while the
second converges to 𝑡z1 + (1 − 𝑡)z2. This completes the proof of the lemma. ■

Lemma 7.1 Let the points z1, . . . , z𝑘 ∈ R̂𝑛 be distinct and let u1, u2 ∈ R̂𝑛 be distinct (but
not necessarily distinct from z1, . . . , z𝑘 ). Suppose that not all of {z1, . . . , z𝑘 , u1, u2} lie on a
(𝑛 − 1)-sphere. Then, ⋂

𝑆∈S𝑖

𝑆 =
⋂

𝐷∈L𝑖

𝐷 for 𝑖 ∈ {1, 2}, (7.2)

where the families S𝑖 and L𝑖 are defined in (6.1) and (6.2).

Proof By symmetry, we may assume that 𝑖 = 1. Since L1 ⊆ S1, it is clear that⋂
𝑆∈S1

𝑆 ⊆
⋂

𝐷∈L1

𝐷.

To see the other containment, without loss of generality assume u1 = ∞. The set
L1 consists of all supporting half-spaces that either correspond to the maximal faces
of the polytope conv{z1, . . . , z𝑘} separating u2 and conv{z1, . . . , z𝑘} or those that
correspond to the maximal faces of the cone

u2 + cone{z1 − u2, . . . , z𝑘 − u2},

or both. Since S1 is the set of all half-spaces that separate u2 and conv{z1, . . . , z𝑘}, we
have that

⋂
𝐷∈L1 𝐷 ⊆ 𝑆 for all 𝑆 ∈ S1. ■

Proof ofTheorem6.3.Without loss of generality, wemay assumeu2 = ∞, andwrite
u1 as u. In the proof we need both families (6.1) and (6.2). SoS1,L1 correspond to u and
S2, L2 correspond to∞. It is clear that

conv(convu{z1, . . . , z𝑘}) ⊆
2⋂
𝑖=1

⋂
𝑆∈S𝑖

𝑆,

because the right hand side is convex with respect to both u and ∞ and contains
{z1, . . . , z𝑘}. We aim to show the opposite inclusion.

2⋂
𝑖=1

⋂
𝑆∈S𝑖

𝑆 ⊆ conv(convu{z1, . . . , z𝑘}).

If∞ ∈ int(convu{z1, . . . , z𝑘}), then conv(convu{z1, . . . , z𝑘}) = R̂𝑛, so the inclusion is
trivial. Thus, we assume that∞ ∉ int(convu{z1, . . . , z𝑘}) and consider four cases based
on whether∞ and u are in {z1, . . . , z𝑘} or not.

Case 1: Assume that∞, u ∉ {z1, . . . , z𝑘}. We consider two sub-cases.
Case 1.a: If ∞ ∉ convu{z1, . . . , z𝑘}, by Lemma 5.1, part (1), there is a spherical

domain 𝑆, containing convu{z1, . . . , z𝑘} and having u on its boundary, that strongly
separates convu{z1, . . . , z𝑘} and {∞}. Since∞ is in cl(𝑆𝑐), 𝑆 is convex with respect to
both∞ and u, we get that 𝑆 ∈ S1. So∞ ∉

⋂2
𝑖=1

⋂
𝑆∈S𝑖

𝑆.
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Since∞ ∉ convu{z1, . . . , z𝑘}, then convu{z1, . . . , z𝑘} is closed and bounded. Thus,
the set conv(convu{z1, . . . , z𝑘}) is closed and therefore also closed in R̂𝑛 ∖ {∞}. So,
by Lemma 5.1, part (1), for any x ∉ conv(convu{z1, . . . , z𝑘}) ∪ {∞}, there is a spheri-
cal domain 𝑆, containing conv(convu{z1, . . . , z𝑘}) and having∞ on its boundary, that
strongly separates the sets {x} and conv(convu{z1, . . . , z𝑘}). We want to show that
x ∉

⋂2
𝑖=1

⋂
𝑆∈S𝑖

𝑆.
Indeed, if u ∈ cl(𝑆𝑐), then since 𝑆 is convex with respect to both u and∞, we have

𝑆 ∈ S2. So, x ∉
⋂2

𝑖=1
⋂

𝑆∈S𝑖
𝑆. If u ∉ cl(𝑆𝑐), then cl(𝑆𝑐) is a closed u-convex spherical

domain containing both x and ∞, and not containing u (in particular, u is not on the
boundary of cl(𝑆𝑐)). Next, convu{z1, . . . , z𝑘} is a u-convex set that is closed in R̂𝑛 ∖
{u}. By Lemma 5.1, part (1), there is a spherical domain 𝑆′, having u on its boundary,
containing convu{z1, . . . , z𝑘} and strongly separating convu{z1, . . . , z𝑘} and cl(𝑆𝑐).
Since∞ ∈ cl(𝑆𝑐), we have that 𝑆′ does not contain∞, and has u on its boundary. So,
𝑆′ ∈ S1 and since x ∈ cl(𝑆𝑐) we get that x ∉ 𝑆′ and conclude that x ∉

⋂2
𝑖=1

⋂
𝑆∈S𝑖

𝑆.
This concludes the proof in the case when∞ ∉ convu{z1, . . . , z𝑘}.

Case 1.b: Suppose now ∞ ∈ 𝜕convu{z1, . . . , z𝑘}, then by Corollary 4.5, this is
equivalent to u ∈ 𝜕conv{z1, . . . , z𝑘}. Every domain 𝑆 ∈ S1 is u-convex and contains
{z1, . . . , z𝑘} by definition, so it contains convu{z1, . . . , z𝑘}. This implies that 𝑆 also
contains∞, but by definition∞ ∈ cl(𝑆𝑐) and therefore∞ ∈ 𝜕𝑆. Similarly, u ∈ 𝜕𝑆 for
all 𝑆 ∈ S2, so we conclude that S1 and S2 contain the same domains. Since a domain
𝑆 ∈ L1 or 𝑆 ∈ L2 is forced to have bothu and∞on its boundary, they are all half-spaces.
Therefore, for all 𝑆 ∈ L1 ∪ L2 we get that

affu{{z1, . . . , z𝑘 , u,∞} ∩ 𝜕𝑆} = aff∞{{z1, . . . , z𝑘 , u,∞} ∩ 𝜕𝑆} (7.3)
= affu{{z1, . . . , z𝑘 , u} ∩ 𝜕𝑆}.

To see the last equality, note that we have

∞ ∈ 𝜕convu{z1, . . . , z𝑘} ⊆ affu{{z1, . . . , z𝑘 , u} ∩ 𝜕𝑆}.

The first equality in (7.3) shows that the families L1 and L2 are equal. By assumption
z1, . . . , z𝑘 , u,∞ are not all on a hyperplane. So, using Lemma 7.1, we have

2⋂
𝑖=1

⋂
𝑆∈S𝑖

𝑆 =

2⋂
𝑖=1

⋂
𝑆∈L𝑖

𝑆 =
⋂
𝑆∈L1

𝑆.

Let L be the family of spherical domains described in Lemma 6.1. Then the second
equality in (7.3) shows that L1 ⊆ L. Note that if 𝑆 ∈ L and ∞ ∈ 𝜕𝑆, then 𝑆 ∈ L1.
Therefore, if 𝑆 ∈ L ∖ L1 then ∞ ∉ 𝜕𝑆, in other words 𝜕𝑆 is a bounded set. Any
spherical domain 𝑆 ∈ L ∖ L1 contains {z1, . . . , z𝑘} and has u on its boundary, hence
𝑆 contains convu{z1, . . . , z𝑘}. Thus, 𝑆 is unbounded, since∞ ∈ convu{z1, . . . , z𝑘}, by
Corollary 4.4. SinceL∖L1 is a finite set, there is an 𝑅 > 0, such that𝐷 (0; 𝑅)𝑐 ⊂ 𝑆∖{u}
for all 𝑆 ∈ L ∖ L1. (Here, 𝐷 (0; 𝑅) is the open ball with centre 0 and radius 𝑅.) Thus,
we have

𝐷 (0; 𝑅)𝑐 ⊆
⋂

𝑆∈L∖L1

𝑆 ∖ {u}.
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Therefore, ⋂
𝑆∈L1

𝑆 ∩ 𝐷 (0; 𝑅)𝑐 ⊆
( ⋂
𝑆∈L1

𝑆

)
∩
( ⋂
𝑆∈L∖L1

𝑆 ∖ {u}
)

=
⋂
𝑆∈L

𝑆 ∖ {u} = convu{z1, . . . , z𝑘},

where in the last equality we used Lemma 6.1. Since we are in a case where u ∉

{z1, . . . , z𝑘} and u ∈ 𝜕conv{z1, . . . , z𝑘}, the boundary of the intersection of half-
spaces,

⋂
𝑆∈L1 𝑆, contains at least a line, so

conv
( ⋂
𝑆∈L1

𝑆 ∩ 𝐷 (0; 𝑅)𝑐
)
=

⋂
𝑆∈L1

𝑆,

and by Lemma 7.1, we have

2⋂
𝑖=1

⋂
𝑆∈S𝑖

𝑆 =

2⋂
𝑖=1

⋂
𝑆∈L𝑖

𝑆 =
⋂
𝑆∈L1

𝑆 ⊆ conv(convu{z1, . . . , z𝑘}).

Case 2: Assume that∞ ∈ {z1, . . . , z𝑘}, but u ∉ {z1, . . . , z𝑘}. By definition

conv{z1, . . . , z𝑘} = conv{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘} ∪ {∞}.

If u ∈ conv{z1, . . . , z𝑘}, then u ∈ conv{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘}. So we have
∞ ∈ convu{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘}, and convu{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘} =

convu{z1, . . . , z𝑘}. This, of course, implies that

conv
(
convu{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘}

)
= conv

(
convu{z1, . . . , z𝑘}

)
.

Therefore, any spherical domain 𝑆, convex with respect to both u and∞, that contains
{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘} is forced to contain ∞ because it contains convu{z𝑖 :
z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘}. Thus, ∞ ∈ 𝜕𝑆 because 𝑆 is convex. This implies that the fam-
ilies S1,S2,L1, and L2 corresponding to the sets {z1, . . . , z𝑘} and {z𝑖 : z𝑖 ≠ ∞, 𝑖 =

1, . . . , 𝑘} are the same. So, we can consider the set {z1, . . . , z𝑘} ∖ {∞} and argue as in
Case 1.

Therefore, we may assume that u ∉ conv{z1, . . . , z𝑘}. If 𝑆 ∈ L1, then by definition
∞ ∈ cl(𝑆𝑐), but the premise of the current case implies that∞ ∈ 𝑆, so we need to have
∞ ∈ 𝜕𝑆. Since in addition u ∈ 𝜕𝑆, one can see that

affu{{z1, . . . , z𝑘 , u,∞} ∩ 𝜕𝑆} = aff∞{{z1, . . . , z𝑘 , u,∞} ∩ 𝜕𝑆} (7.4)
= affu{{z1, . . . , z𝑘 , u} ∩ 𝜕𝑆}.

The first equality shows that L1 ⊆ L2. Therefore, we have

2⋂
𝑖=1

⋂
𝑆∈L𝑖

𝑆 =
⋂
𝑆∈L2

𝑆. (7.5)

The family L1 is the set of all half-spaces that support the maximal faces of the cone
u + cone{z1 − u, . . . , z𝑘 − u}. (Note that the latter cone has a non-empty interior, or
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else {z1, . . . , z𝑘 , u,∞} lie on a (𝑛 − 1)-sphere, contradicting our assumption.) That is⋂
𝑆∈L1

𝑆 = u + cone{z1 − u, . . . , z𝑘 − u}

= {u + 𝑡 (z − u) : 𝑡 ≥ 0, z ∈ conv({z1, . . . , z𝑘} − {∞})} ∪ {∞}. (7.6)

A domain 𝑆 ∈ L2 can be of two types: either u ∈ 𝜕𝑆 or u ∈ 𝑆𝑐 . In the first case 𝑆
is a half-space that supports a maximal face of the cone u + cone{z1 − u, . . . , z𝑘 − u},
while in the second case 𝑆 is a half-space that supports a maximal face of the polytope
conv({z1, . . . , z𝑘} ∖ {∞}) that separates u from {z1, . . . , z𝑘}. Thus,⋂

𝑆∈L2

𝑆 = {z + 𝑡 (z − u) : 𝑡 ≥ 0, z ∈ conv({z1, . . . , z𝑘} − {∞})} ∪ {∞}. (7.7)

We need to prove that ⋂
𝑆∈L2

𝑆 ⊆ conv(convu{z1, . . . , z𝑘}).

Let again L be the family as described in Lemma 6.1. Then, the second equality in (7.4)
shows thatL1 ⊆ L. Note that if 𝑆 ∈ L and∞ ∈ 𝜕𝑆, then 𝑆 ∈ L1. Therefore, if 𝑆 ∈ L∖
L1 then∞ ∉ 𝜕𝑆, in other words 𝜕𝑆 is a bounded set. Any spherical domain 𝑆 ∈ L∖L1
contains {z1, . . . , z𝑘} and has u on its boundary, hence 𝑆 contains convu{z1, . . . , z𝑘}.
Thus, 𝑆 is unbounded, since∞ ∈ convu{z1, . . . , z𝑘}, by Corollary 4.4. SinceL∖L1 is a
finite set, there is an 𝑅 > 0, such that𝐷 (0; 𝑅)𝑐 ⊂ 𝑆∖{u} for all 𝑆 ∈ L∖L1. We get that

{z1, . . . , z𝑘} ∪ 𝐷 (0; 𝑅)𝑐 ⊆ {z1, . . . , z𝑘} ∪
⋂

𝑆∈L∖L1

𝑆 ∖ {u}.

Therefore,

(
{z1, . . . , z𝑘} ∪ 𝐷 (0; 𝑅)𝑐

)
∩

⋂
𝑆∈L1

𝑆 ⊆
(
{z1, . . . , z𝑘} ∪

⋂
𝑆∈L

𝑆

)
∖ {u} (7.8)

=
⋂
𝑆∈L

𝑆 ∖ {u} = convu{z1, . . . , z𝑘},

where in the last equality we used Lemma 6.1. Using representations (7.6) and (7.7), one
can see that for large enough 𝑅, we have⋂

𝑆∈L1

𝑆 ∩ 𝐷 (0; 𝑅)𝑐 =
⋂
𝑆∈L2

𝑆 ∩ 𝐷 (0; 𝑅)𝑐 . (7.9)

2024/11/06 15:04



On Polar Convexity in Finite-Dimensional Euclidean Spaces 37

Thus, taking the convex hull from both sides in (7.8), we obtain

conv(convu{z1, . . . , z𝑘}) ⊇ conv
( (
{z1, . . . , z𝑘} ∪ 𝐷 (0; 𝑅)𝑐

)
∩

⋂
𝑆∈L1

𝑆

)
= conv

(
{z1, . . . , z𝑘} ∪

(
𝐷 (0; 𝑅)𝑐 ∩

⋂
𝑆∈L1

𝑆

))
= conv

(
{z1, . . . , z𝑘} ∪

(
𝐷 (0; 𝑅)𝑐 ∩

⋂
𝑆∈L2

𝑆

))
=

⋂
𝑆∈L2

𝑆.

This concludes the proof in this case.
Case 3: Assume u ∈ {z1, . . . , z𝑘} but∞ ∉ {z1, . . . , z𝑘}. By definition

convu{z1, . . . , z𝑘} = convu{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} ∪ {u}.

If u ∈ conv{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘}, then we have ∞ ∈ convu{z𝑖 : z𝑖 ≠ u, 𝑖 =
1, . . . , 𝑘} and conv{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} = conv{z1, . . . , z𝑘}. Therefore, as
before, any spherical domain 𝑆 convex with respect to both u and∞ that contains {z𝑖 :
z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} is forced to contain u because it contains conv{z𝑖 : z𝑖 ≠ u, 𝑖 =
1, . . . , 𝑘}. Thus, u ∈ 𝜕𝑆 because 𝑆 is u-convex. This implies that the familiesS1,S2,L1
and L2 corresponding to the sets {z1, . . . , z𝑘} and {z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} are the
same. So we can consider the set {z1, . . . , z𝑘} ∖ {u} and argue as in Case 1.

Assume now u ∉ conv{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘}, that is, u is a extreme point
of conv{z1, . . . , z𝑘}. By Corollary 4.6, this also implies that ∞ ∉ convu{z1, . . . , z𝑘},
so convu{z1, . . . , z𝑘} is closed and bounded. Therefore, conv(convu{z1, . . . , z𝑘}) is
closed and bounded. We aim to show that

If x ∉ conv(convu{z1, . . . , z𝑘}), then x ∉

2⋂
𝑖=1

⋂
𝑆∈S𝑖

𝑆.

If x = ∞, then since∞ ∉ convu{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘}, by Lemma 5.1, part (1),
there is a spherical domain 𝑆, containing convu{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} and having
u on its boundary, that strongly separates convu{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} and {∞}.
Since ∞ is in 𝑆𝑐 , 𝑆 is convex with respect to both ∞ and u, we get that 𝑆 ∈ S1. So
∞ ∉

⋂2
𝑖=1

⋂
𝑆∈S𝑖

𝑆.
If x ∉ conv(convu{z1, . . . , z𝑘}) ∪ {∞}, then there is a closed half-space 𝑆 strongly

separating x and conv(convu{z1, . . . , z𝑘}) and containing the latter set. If u ∈ cl(𝑆𝑐),
then 𝑆 is also u-convex, so 𝑆 ∈ S2 and x ∉

⋂2
𝑖=1

⋂
𝑆∈S𝑖

𝑆. If u ∈ int(𝑆), then cl(𝑆𝑐) is
a u-convex domain disjoint from convu{z1, . . . , z𝑘} and containing both∞ and x. By
Lemma 5.1, part (1), there is a spherical domain 𝑆′, having u on its boundary, containing
convu{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘} and strongly separating convu{z𝑖 : z𝑖 ≠ u, 𝑖 =

1, . . . , 𝑘} and cl(𝑆𝑐). Also, because u ∈ 𝜕𝑆′, we get that 𝑆′ contains convu{z1, . . . , z𝑘}.
Since∞ ∈ cl(𝑆𝑐), we have that 𝑆′ does not contain∞, andhasuon its boundary. So, 𝑆′ ∈
S1. Finally, since x ∈ cl(𝑆𝑐), we get that x ∉ 𝑆′ and conclude that x ∉

⋂2
𝑖=1

⋂
𝑆∈S𝑖

𝑆.
This concludes the proof in this case.
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Case 4: Assume that ∞, u ∈ {z1, . . . , z𝑘}. If u ∈ conv{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘},
then u ∈ conv{z𝑖 : z𝑖 ≠ u,∞, 𝑖 = 1, . . . , 𝑘}. Then, by Theorem 4.3,

∞ ∈ convu{z𝑖 : z𝑖 ≠ u,∞, 𝑖 = 1, . . . , 𝑘} ⊆ convu{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘}.

Therefore, any spherical domain 𝑆, convex with respect to both u and∞, that contains
{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘} is forced to contain ∞ because it contains convu{z𝑖 :
z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘}. Thus, ∞ ∈ 𝜕𝑆, because 𝑆 is ∞-convex. This implies that the
familiesS1,S2,L1 andL2 corresponding to the sets {z1, . . . , z𝑘} and {z𝑖 : z𝑖 ≠ ∞, 𝑖 =

1, . . . , 𝑘} are the same. So, we can consider the set {z1, . . . , z𝑘} ∖ {∞} and argue as in
Case 3.

Assume that u ∉ conv{z𝑖 : z𝑖 ≠ u, 𝑖 = 1, . . . , 𝑘}, then

u ∉ conv{z𝑖 : z𝑖 ≠ u,∞, 𝑖 = 1, . . . , 𝑘} ∪ {∞}.

Then, using Theorem 4.3, we obtain

∞ ∉ convu{z𝑖 : z𝑖 ≠ u,∞, 𝑖 = 1, . . . , 𝑘} ∪ {u} = convu{z𝑖 : z𝑖 ≠ ∞, 𝑖 = 1, . . . , 𝑘}.

It follows from definitions (6.1) and (6.2), that S1 = S2 and L1 = L2 because all the
domains 𝑆 ∈ S1 ∪ S2 are forced to contain both∞ and u on their boundary. Thus, the
family L1 consists of all supporting half-spaces corresponding to the maximal faces of
the coneu+cone{z1−u, . . . , z𝑘−u}. (Note that the latter cone has a non-empty interior,
or else {z1, . . . , z𝑘 , u,∞} lie on a (𝑛 − 1)-sphere, contradicting our assumption.) So,
using (7.2), one sees that

2⋂
𝑖=1

⋂
𝑆∈S𝑖

𝑆 =

2⋂
𝑖=1

⋂
𝑆∈L𝑖

𝑆 =
⋂
𝑆∈L1

𝑆 = u + cone{z1 − u, . . . , z𝑘 − u}. (7.10)

To conclude the argument, it is sufficient to show

u + cone{z1 − u, . . . , z𝑘 − u} ⊆ conv(convu{z1, . . . , z𝑘}).

As before, let L be the family of spherical domains described in Lemma 6.1. Since∞ ∈
{z1, . . . , z𝑘}, all the domains 𝑆 in L are unbounded. Note that L1 ⊆ L. There are two
types of domains in L: those with ∞ in their interior and those that have ∞ on their
boundary. The latter ones are those in L1. There are finitely many domains in L, and
since the domains 𝑆 ∈ L∖L1 have bounded boundaries, the boundaries are all in a ball
𝐷 (0; 𝑅) with large enough radius 𝑅 > 0. So, we can conclude that 𝐷 (0; 𝑅)𝑐 ∪ {u} ⊆ 𝑆

for all 𝑆 ∈ L ∖ L1. Thus, by Lemma 6.1, we have⋂
𝑆∈L1

𝑆 ∩
(
𝐷 (0; 𝑅)𝑐 ∪ {u}

)
⊆

( ⋂
𝑆∈L1

𝑆

)
∩
( ⋂
𝑆∈L∖L1

𝑆

)
=

⋂
𝑆∈L

𝑆

= convu{z1, . . . , z𝑘}.

Therefore, using (7.10), the set convu{z1, . . . , z𝑘} contains u and all points of u +
cone{z1 − u, . . . , z𝑘 − u} beyond a certain radius. So, we conclude

u + cone{z1 − u, . . . , z𝑘 − u} ⊆ conv(convu{z1, . . . , z𝑘}).

This completes the proof. ■
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