Polar Convexity in finite dimensional Euclidean spaces

Shubhankar Bhatt

(Joint work with Hristo Sendov)

Department of Mathematics

Western University, Ontario, Canada

International Symposium on Mathematical Programming

July $21^{\rm st}$ - $26^{\rm th}$, 2024

1/40

・ロト ・日下・ ・ ヨト・

Outline

Ontivation

- Ouality theorem and its consequences
- 5 Theorems of the alternative
- 6 Polar convexity with multiple poles

< □ > < □ > < □ > < □ > < □ >

• Convex sets contain the line segment between any two points in them

- Convex sets contain the line segment between any two points in them
- $\, \bullet \,$ Lines between two points are circles passing through $\infty \,$

	•		E 999
Shubhankar Bhatt (UWO)	Polar Convexity	ISMP-2024	3 / 40

- Convex sets contain the line segment between any two points in them
- ullet Lines between two points are circles passing through ∞

 $\bullet~$ Replace ∞ with a finite point ${\bf u}$

	Polar Convexity	
--	-----------------	--

▲□▶ ▲圖▶ ▲国▶ ▲国▶

- $\bullet~\mbox{Replace}~\infty$ with a finite point u
- \bullet Consider the circle passing through u,z_1,z_2

・ロト ・ 日 ・ ・ ヨ ・ ・

The idea

- $\bullet~$ Replace ∞ with a finite point u
- Consider the circle passing through **u**, **z**₁, **z**₂
- Let $\operatorname{arc}_u[z_1, z_2]$ be the arc on that circle between z_1 and z_2 which does not contain u

・ロト ・日下・ ・ ヨト・

The idea

- Replace ∞ with a finite point ${f u}$
- Consider the circle passing through **u**, **z**₁, **z**₂
- Let $\operatorname{arc}_u[z_1, z_2]$ be the arc on that circle between z_1 and z_2 which does not contain u
- Define a u-convex set to contain $\operatorname{arc}_u[z_1, z_2]$ for any two points z_1, z_2 in it

The idea

- $\bullet~$ Replace ∞ with a finite point u
- Consider the circle passing through **u**, **z**₁, **z**₂
- Let $\operatorname{arc}_u[z_1, z_2]$ be the arc on that circle between z_1 and z_2 which does not contain u
- Define a u-convex set to contain $\operatorname{arc}_u[z_1, z_2]$ for any two points z_1, z_2 in it

4	500

• Let $\hat{\mathbb{R}}^n$ be the one point compactification $\mathbb{R}^n \cup \{\infty\}$

2

メロト メロト メヨト メヨト

- Let $\hat{\mathbb{R}}^n$ be the one point compactification $\mathbb{R}^n \cup \{\infty\}$
- How to parametrize a circular arc in $\hat{\mathbb{R}}^n$?

٩	ロン イロン イヨン イヨン ニヨ	৩৫৫
Polar Convexity	ISMP-2024	5 / 40

- Let $\hat{\mathbb{R}}^n$ be the one point compactification $\mathbb{R}^n \cup \{\infty\}$
- How to parametrize a circular arc in $\hat{\mathbb{R}}^n$?

• Let
$$\mathbf{z}^* := \frac{\mathbf{z}}{\|\mathbf{z}\|^2}$$
 ($\mathbf{0}^* = \infty$ and $\infty^* = \mathbf{0}$) and for $\mathbf{u} \in \mathbb{R}^n$

$$\mathcal{T}_{u}(z) := \begin{cases} u + (z - u)^{*} & \text{if } z \neq u \\ \\ \infty & \text{if } z = u \end{cases}$$

メロト メタト メヨト メヨト

- Let $\hat{\mathbb{R}}^n$ be the one point compactification $\mathbb{R}^n \cup \{\infty\}$
- How to parametrize a circular arc in $\hat{\mathbb{R}}^n$?

• Let
$$\mathbf{z}^* := \frac{\mathbf{z}}{\|\mathbf{z}\|^2}$$
 ($\mathbf{0}^* = \infty$ and $\infty^* = \mathbf{0}$) and for $\mathbf{u} \in \mathbb{R}^n$

$$\mathcal{T}_{\mathbf{u}}(\mathbf{z}) := \begin{cases} \mathbf{u} + (\mathbf{z} - \mathbf{u})^* & \text{ if } \mathbf{z} \neq \mathbf{u} \\ \\ \infty & \text{ if } \mathbf{z} = \mathbf{u} \end{cases}$$

• Define $T_{\infty} := Id_{\hat{\mathbb{R}}^n}$

э

< □ > < □ > < □ > < □ > < □ >

- Let $\hat{\mathbb{R}}^n$ be the one point compactification $\mathbb{R}^n \cup \{\infty\}$
- How to parametrize a circular arc in $\hat{\mathbb{R}}^n$?

• Let
$$\mathbf{z}^* := \frac{\mathbf{z}}{\|\mathbf{z}\|^2}$$
 (0^{*} = ∞ and $\infty^* = 0$) and for $\mathbf{u} \in \mathbb{R}^n$

- Define $T_{\infty} := Id_{\hat{\mathbb{R}}^n}$
- T_u is a Möbius transformation and an involution

イロン イロン イヨン イヨン

- Let $\hat{\mathbb{R}}^n$ be the one point compactification $\mathbb{R}^n \cup \{\infty\}$
- How to parametrize a circular arc in $\hat{\mathbb{R}}^n$?

• Let
$$\mathbf{z}^* := \frac{\mathbf{z}}{\|\mathbf{z}\|^2}$$
 (0^{*} = ∞ and $\infty^* = 0$) and for $\mathbf{u} \in \mathbb{R}^n$

- Define $T_{\infty} := Id_{\hat{\mathbb{R}}^n}$
- T_u is a Möbius transformation and an involution
- T_u sends a sphere (or hyperplane) to a sphere (or hyperplane)

イロト イヨト イヨト

- Let $\hat{\mathbb{R}}^n$ be the one point compactification $\mathbb{R}^n \cup \{\infty\}$
- How to parametrize a circular arc in $\hat{\mathbb{R}}^n$?

• Let
$$\mathbf{z}^* := \frac{\mathbf{z}}{\|\mathbf{z}\|^2}$$
 (0^{*} = ∞ and $\infty^* = 0$) and for $\mathbf{u} \in \mathbb{R}^n$

- Define $T_{\infty} := Id_{\hat{\mathbb{R}}^n}$
- T_u is a Möbius transformation and an involution
- T_u sends a sphere (or hyperplane) to a sphere (or hyperplane)
- T_u sends circles (or lines) to circles (or lines)

イロト イヨト イヨト

- Let $\hat{\mathbb{R}}^n$ be the one point compactification $\mathbb{R}^n \cup \{\infty\}$
- How to parametrize a circular arc in $\hat{\mathbb{R}}^n$?

• Let
$$\mathbf{z}^* := \frac{\mathbf{z}}{\|\mathbf{z}\|^2}$$
 ($\mathbf{0}^* = \infty$ and $\infty^* = \mathbf{0}$) and for $\mathbf{u} \in \mathbb{R}^n$

- Define $T_{\infty} := Id_{\hat{\mathbb{R}}^n}$
- T_u is a Möbius transformation and an involution
- T_u sends a sphere (or hyperplane) to a sphere (or hyperplane)
- *T*_u sends circles (or lines) to circles (or lines)
- \bullet Any sphere passing through u is sent to a hyperplane

5/40

イロト イヨト イヨト

Definition

For $\mathbf{z}_1, \mathbf{z}_2, \mathbf{u} \in \mathbb{R}^n$ distinct, define

$$\operatorname{arc}_{\mathbf{u}} [\mathbf{z}_{1}, \mathbf{z}_{2}] := \left\{ \mathbf{u} + (t(\mathbf{z}_{1} - \mathbf{u})^{*} + (1 - t)(\mathbf{z}_{2} - \mathbf{u})^{*})^{*} : t \in [0, 1] \right\}$$

$$= \left\{ T_{\mathbf{u}} (tT_{\mathbf{u}}(\mathbf{z}_{1}) + (1 - t)T_{\mathbf{u}}(\mathbf{z}_{2})) : t \in [0, 1] \right\}$$

$$(1)$$

If $\mathbf{z}_1 = \mathbf{u}$ or $\mathbf{z}_2 = \mathbf{u}$, define $\operatorname{arc}_{\mathbf{u}}[\mathbf{z}_1, \mathbf{z}_2] := \{\mathbf{z}_1, \mathbf{z}_2\}$

イロト 不良 とくほとくほう

Definition

For $\mathbf{z}_1, \mathbf{z}_2, \mathbf{u} \in \mathbb{R}^n$ distinct, define

$$\operatorname{arc}_{\mathbf{u}}[\mathbf{z}_{1}, \mathbf{z}_{2}] := \left\{ \mathbf{u} + \left(t(\mathbf{z}_{1} - \mathbf{u})^{*} + (1 - t)(\mathbf{z}_{2} - \mathbf{u})^{*} \right)^{*} : t \in [0, 1] \right\}$$
(1)
$$= \left\{ T_{\mathbf{u}} \left(t T_{\mathbf{u}}(\mathbf{z}_{1}) + (1 - t) T_{\mathbf{u}}(\mathbf{z}_{2}) \right) : t \in [0, 1] \right\}$$

If
$$\mathbf{z}_1 = \mathbf{u}$$
 or $\mathbf{z}_2 = \mathbf{u}$, define $\operatorname{arc}_{\mathbf{u}}[\mathbf{z}_1, \mathbf{z}_2] := \{\mathbf{z}_1, \mathbf{z}_2\}$

If $z_1, z_2, u \in \mathbb{C}$ (identified with \mathbb{R}^2), then (1) simplifies to

$$\operatorname{arc}_{u}[z_{1}, z_{2}] = \left\{ u + \frac{1}{\frac{t}{z_{1}-u} + \frac{1-t}{z_{2}-u}} : t \in [0, 1] \right\}$$

イロト 不良 とくほとくほう

Varying the parameter t through $\mathbb{R} \cup \{\infty\}$

$$u + (t(z_1 - u)^* + (1 - t)(z_2 - u)^*)^*$$

When \boldsymbol{u} is between \boldsymbol{z}_1 and \boldsymbol{z}_2

When $\mathbf{z}_2 = \infty$

2

8 / 40

▲□▶ ▲圖▶ ▲国▶ ▲国▶

Definition

A is said to be **u**-convex if for any $z_1, z_2 \in A$, $\operatorname{arc}_u[z_1, z_2] \subseteq A$

	Polar Convexity
--	-----------------

H 5

イロト イヨト イヨト イ

Definition

A is said to be **u**-convex if for any $z_1, z_2 \in A$, $\operatorname{arc}_u[z_1, z_2] \subseteq A$

Define $\operatorname{conv}_{\mathbf{u}}(A)$ to be the smallest with respect to inclusion **u**-convex set containing A

• • • • • • • • • • • •

Definition

A is said to be **u**-convex if for any $z_1, z_2 \in A$, $\operatorname{arc}_u[z_1, z_2] \subseteq A$

Define $\operatorname{conv}_{\mathbf{u}}(A)$ to be the smallest with respect to inclusion **u**-convex set containing ADefine the pole set, $\mathcal{P}(A)$, as the set of all points $\mathbf{u} \in \mathbb{R}^n$ such that A is **u**-convex

A D M A B M A B M

Definition

A is said to be u-convex if for any $z_1, z_2 \in A$, $\operatorname{arc}_u[z_1, z_2] \subseteq A$

Define $\operatorname{conv}_{\mathbf{u}}(A)$ to be the smallest with respect to inclusion **u**-convex set containing ADefine the pole set, $\mathcal{P}(A)$, as the set of all points $\mathbf{u} \in \mathbb{R}^n$ such that A is **u**-convex

Definition

Given points $z_1, \ldots, z_k \in \hat{\mathbb{R}}^n$ and a $u \in \hat{\mathbb{R}}^n$ distinct from them, define

$$\operatorname{conv}_{\mathbf{u}}\{\mathbf{z}_1,\ldots,\mathbf{z}_k\} := \left\{\mathbf{u} + \left(\sum_{i=1}^k t_i(\mathbf{z}_i-\mathbf{u})^*\right)^* : t_i \ge 0 \text{ with } \sum_{i=1}^k t_i = 1\right\}$$

 $\mathsf{If}\; u \in \{z_1, \dots, z_k\} \; \mathsf{define}\; \mathrm{conv}_u\{z_1, \dots, z_k\} := \mathrm{conv}_u\{z_i: z_i \neq u, i = 1, \dots, k\} \cup \{u\}$

イロト イヨト イヨト イ

Given $\mathbf{u}, \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^n$ and $t \in [0, 1]$

$$\mathbf{u} + \left(t(\mathbf{z}_1 - \mathbf{u})^* + (1 - t)(\mathbf{z}_2 - \mathbf{u})^*\right)^* \longrightarrow t\mathbf{z}_1 + (1 - t)\mathbf{z}_2$$

as $\|\mathbf{u}\| \to \infty$

· · · · · · · · · · · · · · · · · · ·	NEKNEK.	-	
Polar Convexity	ISMP-2024		10 / 40

Given $\mathbf{u}, \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^n$ and $t \in [0, 1]$

$$\mathbf{u} + \left(t(\mathbf{z}_1 - \mathbf{u})^* + (1 - t)(\mathbf{z}_2 - \mathbf{u})^*\right)^* \longrightarrow t\mathbf{z}_1 + (1 - t)\mathbf{z}_2$$

as $\|\mathbf{u}\| \to \infty$

The transformation T_u maps u-convex sets to convex sets

		+) 4 (+
Polar Convexity	ISMP-2024	10 / 40

Given $\mathbf{u}, \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^n$ and $t \in [0, 1]$

$$\mathbf{u} + \left(t(\mathbf{z}_1 - \mathbf{u})^* + (1 - t)(\mathbf{z}_2 - \mathbf{u})^*\right)^* \longrightarrow t\mathbf{z}_1 + (1 - t)\mathbf{z}_2$$

as $\|\mathbf{u}\| \to \infty$

The transformation T_u maps u-convex sets to convex sets

All of the classical results can be translated

1 m m		

< □ > < □ > < □ > < □ > < □ >

Given $\mathbf{u}, \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{R}^n$ and $t \in [0, 1]$

$$\mathbf{u} + \left(t(\mathbf{z}_1 - \mathbf{u})^* + (1 - t)(\mathbf{z}_2 - \mathbf{u})^*\right)^* \longrightarrow t\mathbf{z}_1 + (1 - t)\mathbf{z}_2$$

as $\|\mathbf{u}\| \to \infty$

The transformation T_u maps u-convex sets to convex sets

All of the classical results can be translated

Let's see some examples

		(11)

< □ > < □ > < □ > < □ > < □ >

Half planes are convex with respect to any point not in their interior

<	日本(四本(日本(日本)	æ	୬୯୯
Polar Convexity	ISMP-2024		11 / 40

Circular domains are convex w.r.t. any point not in their interior

・ロト ・四ト ・ヨト ・ヨト 三日

A cone is convex w.r.t. any point in its negative cone

The intersection of three circular domains and its pole set

Polar Convexity	ISMP-202	4 14 /	40

イロト イヨト イヨト イヨト

3

The intersection of three circular domains and its pole set

2

▲□▶ ▲圖▶ ▲国▶ ▲国▶

The intersection of three circular domains and its pole set

2

▲□▶ ▲圖▶ ▲国▶ ▲国▶

The inside of an ellipse is convex w.r.t. any point in the green region

hubhankar Bhatt (UWO)	Polar Convexity		ISMP-:	2024		17 / 40
	٠	< 🗗 🕨	★夏≯	◆夏◆	- E	うくで

As one may notice, spherical domains are central to the theory

	•	ㅁ 돈 소 溷 돈 소 볼 돈 것	E nac
Shubhankar Bhatt (UWO)	Polar Convexity	ISMP-2024	18 / 40

As one may notice, spherical domains are central to the theory Let $A \subseteq \hat{\mathbb{R}}^n$ be a set not containing **u**

As one may notice, spherical domains are central to the theory

Let $A \subseteq \hat{\mathbb{R}}^n$ be a set not containing **u**

Proposition

Then $conv_{u}(A)$ is the intersection of all spherical domains that contain A and have u on their boundary, with u omitted

Shubhankar Bhatt (UWO)	Polar Convexity
------------------------	-----------------

< □ > < 同 > < 回 > < 回 >

Take a polynomial
$$p(z)=(z-z_1)^{r_1}\cdots(z-z_k)^{r_k},~~$$
 where $\sum_{j=1}^k r_j=n$

with distinct zeros z_1, \ldots, z_k having respective multiplicities r_1, \ldots, r_k

4		E
Polar Convexity	ISMP-2024	19 / 40

Take a polynomial $p(z) = (z - z_1)^{r_1} \cdots (z - z_k)^{r_k}$, where $\sum_{j=1}^k r_j = n$ with distinct zeros z_1, \ldots, z_k having respective multiplicities r_1, \ldots, r_k For all $i, j \in \{1, \ldots, k\}$, define the points

$$g_{i,j} := \begin{cases} (r_i z_j + (n - r_i) z_i)/n & \text{if } i \neq j \\ \infty & \text{if } i = j \end{cases}$$

< □ > < □ > < □ > < □ > < □ >

Take a polynomial $p(z) = (z - z_1)^{r_1} \cdots (z - z_k)^{r_k}$, where $\sum_{j=1}^k r_j = n$ with distinct zeros z_1, \ldots, z_k having respective multiplicities r_1, \ldots, r_k For all $i, j \in \{1, \ldots, k\}$, define the points

$$g_{i,j} := \begin{cases} (r_i z_j + (n - r_i) z_i)/n & \text{if } i \neq j \\ \infty & \text{if } i = j \end{cases}$$

Lemma (Specht [1959])

Every non-trivial critical points of p(z) lies in

 $\operatorname{conv}\{g_{i,j}: 1 \leq i,j \leq k, i \neq j\}$

	4	ロ > 《國 > 《 문 > 《 문 > 문	୬୯୯
Shubhankar Bhatt (UWO)	Polar Convexity	ISMP-2024	19 / 40

```
Theorem (Sendov [2021])
```

Every non-trivial critical points of p(z) lies in

$$\operatorname{conv}\{z_1,\ldots,z_k\}\cap \bigcap_{i=1}^k \operatorname{conv}_{z_i}\{g_{i,1},\ldots,g_{i,k}\}$$

Polar Convexity	ISMP-2024	20 / 40

イロト イヨト イヨト イヨト

э

Theorem (Sendov [2021])

Every non-trivial critical points of p(z) lies in

$$\operatorname{conv}\{z_1,\ldots,z_k\}\cap \bigcap_{i=1}^k \operatorname{conv}_{z_i}\{g_{i,1},\ldots,g_{i,k}\}$$

Define

$$\mathcal{D}_u(p;z) := \begin{cases} np(z) - (z-u)p'(z) & \text{if } u \in \mathbb{C} \\ p'(z) & \text{if } u = \infty \end{cases}$$

э

メロト メロト メヨト メヨト

Theorem (Sendov [2021])

Every non-trivial critical points of p(z) lies in

$$\operatorname{conv}\{z_1,\ldots,z_k\}\cap \bigcap_{i=1}^k \operatorname{conv}_{z_i}\{g_{i,1},\ldots,g_{i,k}\}$$

Define

$$\mathcal{D}_u(p;z) := \begin{cases} np(z) - (z-u)p'(z) & \text{if } u \in \mathbb{C} \\ p'(z) & \text{if } u = \infty \end{cases}$$

Theorem (Sendov, Sendov, Wang [2018])

Let p(z) be a polynomial of degree n with zeroes $z_1, \ldots, z_n \in \mathbb{C}$

For any $u \in \mathbb{C}$ if $\mathcal{D}_u(p; z) \neq 0$, then all its zeros are in $\operatorname{conv}_u\{z_1, \ldots, z_n\}$

イロト イヨト イヨト イヨト

Theorem

Let $\mathbf{u}, \mathbf{v}, \mathbf{z}_1, \dots, \mathbf{z}_k$ be distinct points in $\hat{\mathbb{R}}^n$ then

 $\mathbf{v} \in \operatorname{conv}_{\mathbf{u}} \{ \mathbf{z}_1, \dots, \mathbf{z}_k \}$ if and only if $\mathbf{u} \in \operatorname{conv}_{\mathbf{v}} \{ \mathbf{z}_1, \dots, \mathbf{z}_k \}$

Shubhankar Bhatt (UWO)	Polar Convexity	ISMP-2024	21 / 40
	•	다 에 가 에 다 에 운 에 가 된 어떤 것이 없다.	*) Q (*

Theorem

Let $\mathbf{u}, \mathbf{v}, \mathbf{z}_1, \dots, \mathbf{z}_k$ be distinct points in $\hat{\mathbb{R}}^n$ then

 $\mathbf{v} \in \operatorname{conv}_{\mathbf{u}}\{\mathbf{z}_1, \dots, \mathbf{z}_k\}$ if and only if $\mathbf{u} \in \operatorname{conv}_{\mathbf{v}}\{\mathbf{z}_1, \dots, \mathbf{z}_k\}$

In fact, if

$$\mathbf{v} = \mathbf{u} + \left(\sum_{i=1}^{k} t_i (\mathbf{z}_i - \mathbf{u})^*\right)^*$$
 for some $t_i \ge 0$, $1 \le i \le k$ and $\sum_{i=1}^{k} t_i = 1$

then

$$\mathbf{u} = \mathbf{v} + \left(\sum_{i=1}^{k} \mu_i (\mathbf{z}_i - \mathbf{v})^*\right)^* \text{ for } \mu_i = \frac{t_i \|\mathbf{z}_i - \mathbf{v}\|^2 \|\mathbf{z}_i - \mathbf{u}\|^{-2}}{\sum_{i=1}^{k} t_i \|\mathbf{z}_i - \mathbf{v}\|^2 \|\mathbf{z}_i - \mathbf{u}\|^{-2}}$$

イロン イロン イヨン イヨン

Shubhankar Bhatt (UWO)	Polar Convexity	ISMP-2024	22 / 40
	4	ロトス団とスポトス語という	E

Definition

A point $v \in \mathrm{conv}_u\{z_1,\ldots,z_k\}$ is u-extreme point if it cannot be written as a non-trivial

u-convex combination of any two distinct points in $\operatorname{conv}_{u}\{z_1, \ldots, z_k\}$

٠.		୬୯୯
Polar Convexity	ISMP-2024	23 / 40

Definition

A point $\mathbf{v} \in \operatorname{conv}_{\mathbf{u}}\{\mathbf{z}_1, \dots, \mathbf{z}_k\}$ is \mathbf{u} -extreme point if it cannot be written as a non-trivial \mathbf{u} -convex combination of any two distinct points in $\operatorname{conv}_{\mathbf{u}}\{\mathbf{z}_1, \dots, \mathbf{z}_k\}$

The duality theorem gives a nice criteria to decide whether a point is \mathbf{u} -extreme or not

		Pola
--	--	------

イロト イヨト イヨト イ

Definition

A point $\mathbf{v} \in \operatorname{conv}_{\mathbf{u}}\{\mathbf{z}_1, \dots, \mathbf{z}_k\}$ is \mathbf{u} -extreme point if it cannot be written as a non-trivial \mathbf{u} -convex combination of any two distinct points in $\operatorname{conv}_{\mathbf{u}}\{\mathbf{z}_1, \dots, \mathbf{z}_k\}$

The duality theorem gives a nice criteria to decide whether a point is \mathbf{u} -extreme or not Corollary

 $\textbf{z}_i \in \operatorname{conv}_\textbf{u}\{\textbf{z}_1, \dots, \textbf{z}_k\} \text{ is u-extreme } \iff \textbf{u} \notin \operatorname{conv}_{\textbf{z}_i}\{\textbf{z}_1, \dots, \textbf{z}_{i-1}, \textbf{z}_{i+1}, \dots, \textbf{z}_k\}$

	Polar	Convexity
--	-------	-----------

イロト イヨト イヨト イ

Definition

A point $\mathbf{v} \in \operatorname{conv}_{\mathbf{u}}\{\mathbf{z}_1, \dots, \mathbf{z}_k\}$ is \mathbf{u} -extreme point if it cannot be written as a non-trivial \mathbf{u} -convex combination of any two distinct points in $\operatorname{conv}_{\mathbf{u}}\{\mathbf{z}_1, \dots, \mathbf{z}_k\}$

The duality theorem gives a nice criteria to decide whether a point is \mathbf{u} -extreme or not Corollary

```
\textbf{z}_i \in \operatorname{conv}_\textbf{u}\{\textbf{z}_1, \dots, \textbf{z}_k\} \text{ is u-extreme } \iff \textbf{u} \notin \operatorname{conv}_{\textbf{z}_i}\{\textbf{z}_1, \dots, \textbf{z}_{i-1}, \textbf{z}_{i+1}, \dots, \textbf{z}_k\}
```

Corollary

For $\mathbf{u} \notin A \subseteq \hat{\mathbb{R}}^n$, $\mathbf{v} \in \operatorname{conv}_{\mathbf{u}}(A)$ is \mathbf{u} -extreme $\iff \mathbf{u} \notin \operatorname{conv}_{\mathbf{v}}(A)$

4	 < Ξ > < Ξ > 	æ	୬ବଙ
Polar Convexity	ISMP-2024		23 / 40

A spherical domain $S \subseteq \hat{\mathbb{R}}^n$ is said to *separate* two sets $A, B \subseteq \hat{\mathbb{R}}^n$ if

$$A \subseteq S$$
 and $B \subseteq cl(S^c)$ or vice-versa

Such a spherical domain (or boundary of the spherical domain) is called a *separating* spherical domain (or separating sphere) for the pair A, B

•	< 🗗 🕨	< = >	< ₹ >	 4) Q (4
Polar Convexity		ISMP	-2024	24 / 40

A spherical domain $S \subseteq \hat{\mathbb{R}}^n$ is said to *separate* two sets $A, B \subseteq \hat{\mathbb{R}}^n$ if

$$A \subseteq S$$
 and $B \subseteq cl(S^c)$ or vice-versa

Such a spherical domain (or boundary of the spherical domain) is called a *separating spherical domain* (or *separating sphere*) for the pair A, BWe say that S strongly separates A and B, if in addition

$$A \cap \partial S = \emptyset = B \cap \partial S$$

<		æ	୬୯୯
Polar Convexity	ISMP-2024		24 / 40

Lemma (Spherical Separation)

Let $\mathbf{u} \in \hat{\mathbb{R}}^n$ and A, B be non-intersecting **u**-convex sets in $\hat{\mathbb{R}}^n$

Then there exists a spherical domain S, with \mathbf{u} on its boundary, separating A and B

Moreover, if $\mathbf{u} \notin A \cup B$ and one of the following holds

- A is closed in $\hat{\mathbb{R}}^n$ and B is closed in $\hat{\mathbb{R}}^n \setminus \{u\}$
- A and B are both open

then S can be chosen to strongly separate A and B

A D > A B > A B > A

Lemma (Gordan's Lemma)

Let $\mathbf{u}, \mathbf{z}_1, \ldots, \mathbf{z}_k \in \hat{\mathbb{R}}^n$ be distinct, such that $\mathbf{u} \neq \mathbf{0}, \infty$

٠	ロ > 《圖 > 《 문 > 《 문 > _ 문	$\mathcal{O}\mathcal{A}\mathcal{C}$
Polar Convexity	ISMP-2024	26 / 40

Lemma (Gordan's Lemma)

Let $\mathbf{u}, \mathbf{z}_1, \ldots, \mathbf{z}_k \in \hat{\mathbb{R}}^n$ be distinct, such that $\mathbf{u} \neq \mathbf{0}, \infty$

Either there are numbers $t_1, \ldots, t_k \in [0, 1]$ with $\sum_{i=1}^k t_i = 1$, such that

$$(\mathbf{0}-\mathbf{u})^* = \sum_{i=1}^k t_i (\mathbf{z}_i - \mathbf{u})^*$$

4		
Polar Convexity	ISMP-2024	4 26 / 40

Lemma (Gordan's Lemma)

Let $\mathbf{u}, \mathbf{z}_1, \ldots, \mathbf{z}_k \in \hat{\mathbb{R}}^n$ be distinct, such that $\mathbf{u} \neq \mathbf{0}, \infty$

Either there are numbers $t_1, \ldots, t_k \in [0, 1]$ with $\sum_{i=1}^k t_i = 1$, such that

$$(\mathbf{0}-\mathbf{u})^* = \sum_{i=1}^k t_i (\mathbf{z}_i - \mathbf{u})^*$$

or there exist some $\mathbf{a} \in \mathbb{R}^n$, $\alpha, \beta \in \mathbb{R}$, with $\beta < 0$, such that

$$\alpha \langle \mathbf{z}_i, \mathbf{z}_i \rangle + \langle \mathbf{z}_i, \mathbf{a} \rangle + \beta > 0, \text{ for all } i = 1, \dots, k$$

 $\alpha \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{a} \rangle + \beta = 0$

	日本《國本《四本《日本》	≣ ୬୍ବ୍ଙ
Polar Convexity	ISMP-2024	26 / 40

Lemma

Let $\mathbf{z}_1, \ldots, \mathbf{z}_k \in \hat{\mathbb{R}}^n$ be distinct and let $\mathbf{u} := -\sum_{i=1}^k t_i \mathbf{z}_i$ for some $t_1, \ldots, t_k \in [0, \infty)$ For any $\mathbf{v} \in \mathbb{R}^n \setminus {\mathbf{u}}$

4		≣ *) ⊄ (*
Polar Convexity	ISMP-2024	27 / 40

Lemma

Let $z_1, \ldots, z_k \in \hat{\mathbb{R}}^n$ be distinct and let $\mathbf{u} := -\sum_{i=1}^k t_i z_i$ for some $t_1, \ldots, t_k \in [0, \infty)$ For any $\mathbf{v} \in \mathbb{R}^n \setminus {\mathbf{u}}$

Either there are numbers $\alpha_1, \ldots, \alpha_k \in [0, \infty)$, such that

$$\mathbf{v} = \sum_{i=1}^{k} \alpha_i \mathbf{z}_i$$

4	다 가 이 때 가 가 된 가 가 된 가 있는 것	*) ((*
Polar Convexity	ISMP-2024	27 / 40

Lemma

Let $\mathbf{z}_1, \ldots, \mathbf{z}_k \in \hat{\mathbb{R}}^n$ be distinct and let $\mathbf{u} := -\sum_{i=1}^k t_i \mathbf{z}_i$ for some $t_1, \ldots, t_k \in [0, \infty)$ For any $\mathbf{v} \in \mathbb{R}^n \setminus {\mathbf{u}}$

Either there are numbers $\alpha_1, \ldots, \alpha_k \in [0, \infty)$, such that

$$\mathbf{v} = \sum_{i=1}^{k} \alpha_i \mathbf{z}_i$$

or there exist $\mathbf{a} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$, with $\alpha \ge 0$, such that

$$lpha\langle \mathbf{z}_i, \mathbf{z}_i
angle + \langle \mathbf{z}_i, \mathbf{a}
angle + eta > 0, \text{ for all } i = 1, \dots, k$$

 $lpha\langle \mathbf{v}, \mathbf{v}
angle + \langle \mathbf{v}, \mathbf{a}
angle + eta < 0$
 $lpha\langle \mathbf{u}, \mathbf{u}
angle + \langle \mathbf{u}, \mathbf{a}
angle + eta = 0$

• • • • • • • • • • • •

Let $\mathbf{z}_1, \ldots, \mathbf{z}_k, \mathbf{u} \in \hat{\mathbb{R}}^n$ be distinct, $\mathbf{u} \neq \infty$ and define

$$\operatorname{cone}_{\mathbf{u}}\{\mathbf{z}_1,\ldots,\mathbf{z}_k\} := \left\{\mathbf{u} + \left(\sum_{i=1}^k t_i(\mathbf{u} + (\mathbf{z}_i - \mathbf{u})^*) - \mathbf{u}\right)^* : t_j \in [0,\infty)\right\} \cup \{\mathbf{u}\}$$

Polar Convexity	ISMP-2024

イロト イロト イヨト イヨト 三日

28 / 40

Let $\mathbf{z}_1, \dots, \mathbf{z}_k, \mathbf{u} \in \hat{\mathbb{R}}^n$ be distinct, $\mathbf{u} \neq \infty$ and define

$$\operatorname{cone}_{\mathbf{u}}\{\mathbf{z}_1,\ldots,\mathbf{z}_k\} := \left\{\mathbf{u} + \left(\sum_{i=1}^k t_i(\mathbf{u} + (\mathbf{z}_i - \mathbf{u})^*) - \mathbf{u}\right)^* : t_j \in [0,\infty)\right\} \cup \{\mathbf{u}\}$$

This is the image under ${\mathcal T}_u$ of $\operatorname{cone}\{{\mathcal T}_u(z_1),\ldots,{\mathcal T}_u(z_k)\}\cup\{\infty\}$

メロト メロト メヨト メヨト

Let $\mathbf{z}_1, \dots, \mathbf{z}_k, \mathbf{u} \in \hat{\mathbb{R}}^n$ be distinct, $\mathbf{u} \neq \infty$ and define

$$\operatorname{cone}_{\mathbf{u}}\{\mathbf{z}_1,\ldots,\mathbf{z}_k\}:=\left\{\mathbf{u}+\left(\sum_{i=1}^k t_i(\mathbf{u}+(\mathbf{z}_i-\mathbf{u})^*)-\mathbf{u}\right)^*:t_j\in[0,\infty)\right\}\cup\{\mathbf{u}\}$$

This is the image under T_u of $\operatorname{cone} \{ T_u(z_1), \ldots, T_u(z_k) \} \cup \{ \infty \}$

It is the union of all circular arcs through $u-u^*,\,u,$ and some $z\in \mathrm{conv}_u\{z_1,\ldots,z_k\}$

• • • • • • • • • • • •

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○○○○

Lemma (Farkas' Lemma)

Let $\mathbf{u}, \mathbf{z}_1, \dots, \mathbf{z}_k \in \hat{\mathbb{R}}^n$ be distinct, $\mathbf{u} \neq \infty$ and let $\mathbf{v} \in \hat{\mathbb{R}}^n \smallsetminus \{\mathbf{u}\}$

4	미 🛛 🖉 🕨 🤇 볼 🕨 🤇 볼 🕨	三 うくの
Polar Convexity	ISMP-2024	30 / 40

Lemma (Farkas' Lemma)

Let $\mathbf{u}, \mathbf{z}_1, \ldots, \mathbf{z}_k \in \hat{\mathbb{R}}^n$ be distinct, $\mathbf{u} \neq \infty$ and let $\mathbf{v} \in \hat{\mathbb{R}}^n \setminus {\mathbf{u}}$ Either there are $t_1, \ldots, t_k \in [0, \infty)$ such that

$$\mathbf{u} + (\mathbf{v} - \mathbf{u})^* = \sum_{i=1}^k t_i (\mathbf{u} + (\mathbf{z}_i - \mathbf{u})^*)$$

4		가 문 가 나 문	*) 4 (*
Polar Convexity	ISME	-2024	30 / 40

Lemma (Farkas' Lemma)

Let $\mathbf{u}, \mathbf{z}_1, \ldots, \mathbf{z}_k \in \mathbb{R}^n$ be distinct, $\mathbf{u} \neq \infty$ and let $\mathbf{v} \in \mathbb{R}^n \setminus {\mathbf{u}}$ Either there are $t_1, \ldots, t_k \in [0, \infty)$ such that

$$\mathbf{u} + (\mathbf{v} - \mathbf{u})^* = \sum_{i=1}^k t_i (\mathbf{u} + (\mathbf{z}_i - \mathbf{u})^*)$$

or there exist $\mathbf{a} \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{R}$ such that

$$\begin{aligned} \alpha \langle \mathbf{z}_i, \mathbf{z}_i \rangle + \langle \mathbf{z}_i, \mathbf{a} \rangle + \beta &\leq 0, \text{ for all } i = 1, \dots, k \\ \alpha \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{a} \rangle + \beta &> 0 \\ \alpha \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{a} \rangle + \beta &= 0 \\ \alpha \langle \mathbf{u}, \mathbf{u} \rangle - \alpha - \beta &= 0 \end{aligned}$$

• • • • • • • • • • • •

Problems with a single pole can often be reduced to classical convexity

٠	미 › 《圖 › 《 폰 › 《 폰 ›	$\mathcal{O}\mathcal{A}\mathcal{O}$
Polar Convexity	ISMP-2024	31 / 40

Problems with a single pole can often be reduced to classical convexity

However a set can be convex with respect to multiple poles

4		= +) 4 (*
Polar Convexity	ISMP-2024	31 / 40

Problems with a single pole can often be reduced to classical convexity

However a set can be convex with respect to multiple poles

Definition

Given $U, Z \subseteq \hat{\mathbb{R}}^n$ define the convex hull of Z with respect to U, denoted by $\operatorname{conv}_U(Z)$, to be the smallest set in $\hat{\mathbb{R}}^n$ containing Z and convex with respect to each $\mathbf{u} \in U$

イロト イヨト イヨト イ
However a set can be convex with respect to multiple poles

Definition

Given $U, Z \subseteq \hat{\mathbb{R}}^n$ define the convex hull of Z with respect to U, denoted by $\operatorname{conv}_U(Z)$, to be the smallest set in $\hat{\mathbb{R}}^n$ containing Z and convex with respect to each $\mathbf{u} \in U$

If $U = \emptyset$ then $\operatorname{conv}_U(Z) = Z$

< □ > < 同 > < 回 > < 回 >

However a set can be convex with respect to multiple poles

Definition

Given $U, Z \subseteq \hat{\mathbb{R}}^n$ define the convex hull of Z with respect to U, denoted by $\operatorname{conv}_U(Z)$, to be the smallest set in $\hat{\mathbb{R}}^n$ containing Z and convex with respect to each $\mathbf{u} \in U$

If $U = \emptyset$ then $\operatorname{conv}_U(Z) = Z$

If $Z = \emptyset$ then $\operatorname{conv}_U(Z) = \emptyset$

However a set can be convex with respect to multiple poles

Definition

Given $U, Z \subseteq \hat{\mathbb{R}}^n$ define the convex hull of Z with respect to U, denoted by $\operatorname{conv}_U(Z)$, to be the smallest set in $\hat{\mathbb{R}}^n$ containing Z and convex with respect to each $\mathbf{u} \in U$

- If $U = \emptyset$ then $\operatorname{conv}_U(Z) = Z$
- If $Z = \emptyset$ then $\operatorname{conv}_U(Z) = \emptyset$

It is hard to determine $\operatorname{conv}_U(Z)$ in general

However a set can be convex with respect to multiple poles

Definition

Given $U, Z \subseteq \hat{\mathbb{R}}^n$ define the convex hull of Z with respect to U, denoted by $\operatorname{conv}_U(Z)$, to be the smallest set in $\hat{\mathbb{R}}^n$ containing Z and convex with respect to each $\mathbf{u} \in U$

- If $U = \emptyset$ then $\operatorname{conv}_U(Z) = Z$
- If $Z = \emptyset$ then $\operatorname{conv}_U(Z) = \emptyset$

It is hard to determine $\operatorname{conv}_U(Z)$ in general

However, things are easier when U and Z are finite

For any $Z \subset \hat{\mathbb{R}}^n$

Lemma

Given distinct points $\mathbf{u}_1, \mathbf{u}_2 \in \hat{\mathbb{R}}^n$, we have

$$\operatorname{conv}_{\{\boldsymbol{u}_1,\boldsymbol{u}_2\}}(Z) = \operatorname{conv}_{\boldsymbol{u}_1}(\operatorname{conv}_{\boldsymbol{u}_2}(Z)) = \operatorname{conv}_{\boldsymbol{u}_2}(\operatorname{conv}_{\boldsymbol{u}_1}(Z))$$

	$(\Pi M O)$

イロト 不良 とくほとくほう

For any $Z \subset \hat{\mathbb{R}}^n$

Lemma

Given distinct points $\mathbf{u}_1, \mathbf{u}_2 \in \hat{\mathbb{R}}^n$, we have

$$\operatorname{conv}_{\{\mathbf{u}_1,\mathbf{u}_2\}}(Z) = \operatorname{conv}_{\mathbf{u}_1}(\operatorname{conv}_{\mathbf{u}_2}(Z)) = \operatorname{conv}_{\mathbf{u}_2}(\operatorname{conv}_{\mathbf{u}_1}(Z))$$

Lemma

Given distinct points $\mathbf{u}_1, \ldots, \mathbf{u}_m \in \hat{\mathbb{R}}^n$, we have

$$\operatorname{conv}_{\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}}(Z) = \operatorname{conv}_{\mathbf{u}_m}(\operatorname{conv}_{\{\mathbf{u}_1,\ldots,\mathbf{u}_{m-1}\}}(Z))$$

4		$\mathcal{O}\mathcal{Q}$
Polar Convexity	ISMP-2024	32 / 40

Let $n \ge 2$ and take distinct points $\mathbf{z}_1, \ldots, \mathbf{z}_k \in \mathbb{R}^n$ Let the points $\mathbf{u}_1, \ldots, \mathbf{u}_m \in \mathbb{R}^n$, $m \ge 2$, be distinct (But not necessarily distinct from $\mathbf{z}_1, \ldots, \mathbf{z}_k$)

Let

$$Z := \{\mathbf{z}_1, \dots, \mathbf{z}_k\}$$
$$U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$$

Polar Convexity	ISMP-2024

イロン イロン イヨン イヨン

Let $n \ge 2$ and take distinct points $\mathbf{z}_1, \ldots, \mathbf{z}_k \in \hat{\mathbb{R}}^n$ Let the points $\mathbf{u}_1, \ldots, \mathbf{u}_m \in \hat{\mathbb{R}}^n, \ m \ge 2$, be distinct (But not necessarily distinct from $\mathbf{z}_1, \ldots, \mathbf{z}_k$) Let

$$Z := \{\mathbf{z}_1, \dots, \mathbf{z}_k\}$$
$$U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$$

Consider the following family for $i \in \{1, \ldots, m\}$

$$\mathcal{L}_i := \left\{ S \subset \hat{\mathbb{R}}^n : S \text{ closed spherical domain, } Z \subset S, \mathbf{u}_i \in \partial S \text{ and} \\ U \subset \operatorname{cl}(S^c) \text{ and } S \text{ is determined by } Z \cup U \right\}$$

Let $n \ge 2$ and take distinct points $\mathbf{z}_1, \ldots, \mathbf{z}_k \in \hat{\mathbb{R}}^n$ Let the points $\mathbf{u}_1, \ldots, \mathbf{u}_m \in \hat{\mathbb{R}}^n, \ m \ge 2$, be distinct (But not necessarily distinct from $\mathbf{z}_1, \ldots, \mathbf{z}_k$) Let

$$Z := \{\mathbf{z}_1, \dots, \mathbf{z}_k\}$$
$$U := \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$$

Consider the following family for $i \in \{1, \ldots, m\}$

 $\mathcal{L}_i := \left\{ S \subset \hat{\mathbb{R}}^n : S \text{ closed spherical domain, } Z \subset S, \mathbf{u}_i \in \partial S \text{ and} \\ U \subset \operatorname{cl}(S^c) \text{ and } S \text{ is determined by } Z \cup U \right\}$

If $\operatorname{conv}_U(Z)$ has non-empty interior, these are finite

If $\operatorname{conv}_U(Z)$ has non-empty interior then the boundary of $\operatorname{conv}_U(Z)$ is made up of pieces of the boundaries of closed spherical domains *S* with the following properties:

4		*)4(*
Polar Convexity	ISMP-2024	34 / 40

If $\operatorname{conv}_U(Z)$ has non-empty interior then the boundary of $\operatorname{conv}_U(Z)$ is made up of pieces of the boundaries of closed spherical domains S with the following properties:

• Each S lies in \mathcal{L}_i , for some $i = 1, \ldots, m$

•	미 🛛 🖉 🕨 🌾 흔 🐂 🦷 흔	$\mathcal{O}\mathcal{A}\mathcal{O}$
Polar Convexity	ISMP-2024	34 / 40

If $\operatorname{conv}_U(Z)$ has non-empty interior then the boundary of $\operatorname{conv}_U(Z)$ is made up of pieces of the boundaries of closed spherical domains S with the following properties:

- Each S lies in \mathcal{L}_i , for some $i = 1, \ldots, m$
- Each piece of the boundary is of the form $\operatorname{conv}_{\partial S \cap U}(\partial S \cap Z)$

•	□ ► < d	⇒ →	$\equiv \ast$	${\bf A} \equiv {\bf A}$	12	୬୯୯
Polar Convexity			ISMP-	2024		34 / 40

If $\operatorname{conv}_U(Z)$ has non-empty interior then the boundary of $\operatorname{conv}_U(Z)$ is made up of pieces of the boundaries of closed spherical domains S with the following properties:

- Each S lies in \mathcal{L}_i , for some $i = 1, \ldots, m$
- Each piece of the boundary is of the form $\operatorname{conv}_{\partial S \cap U}(\partial S \cap Z)$
- $\operatorname{conv}_U(Z) = \bigcap_{i=1}^m \bigcap_{S \in \mathcal{L}_i} S$

· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	2	୬୯୯
Polar Convexity	ISMP-2024		34 / 40

If $\operatorname{conv}_U(Z)$ has non-empty interior then the boundary of $\operatorname{conv}_U(Z)$ is made up of pieces of the boundaries of closed spherical domains S with the following properties:

- Each S lies in \mathcal{L}_i , for some $i = 1, \ldots, m$
- Each piece of the boundary is of the form $\operatorname{conv}_{\partial S \cap U}(\partial S \cap Z)$

•
$$\operatorname{conv}_U(Z) = \bigcap_{i=1}^m \bigcap_{S \in \mathcal{L}_i} S$$

In other words, given a point $\mathbf{z} \notin \operatorname{conv}_U(Z)$, there exists a spherical domain $S \in \mathcal{L}_i$

such that $\mathbf{z} \notin S$, for some $i = 1, \ldots, m$

		(1) (1)

• • • • • • • • • • •

2

Recall

$$\operatorname{conv}_{u}(\operatorname{conv}_{\infty}(Z)) = \operatorname{conv}_{\infty}(\operatorname{conv}_{u}(Z))$$

٠	미 》 《國 》 《 필 》 《 필 》 클	うくで
Polar Convexity	ISMP-2024	36 / 40

Recall

$$\operatorname{conv}_{u}(\operatorname{conv}_{\infty}(Z)) = \operatorname{conv}_{\infty}(\operatorname{conv}_{u}(Z))$$

Given distinct points $\mathbf{u}, \mathbf{z}_1, \dots, \mathbf{z}_k \in \mathbb{R}^n$, and $t, \alpha_j, \beta_j \in [0, 1]$, for $1 \leq j \leq k$, such that

$$\sum_{j=1}^{k} \alpha_j = \sum_{j=1}^{k} \beta_j = 1$$

there exist $\gamma_i, \delta_{i,j} \in [0, 1]$, for $1 \leq i \leq n + 1$ and $1 \leq j \leq k$, such that

$$\sum\limits_{i=1}^{n+1} \gamma_i = \sum\limits_{j=1}^k \delta_{i,j} = 1$$
 for all $1 \leqslant i \leqslant n+1$

and satisfying

$$\left(t\left(\sum_{i=1}^{k}\alpha_{i}(\mathbf{z}_{i}-\mathbf{u})\right)^{*}+(1-t)\left(\sum_{i=1}^{k}\beta_{i}(\mathbf{z}_{i}-\mathbf{u})\right)^{*}\right)^{*}=\sum_{i=1}^{n+1}\gamma_{i}\left(\sum_{j=1}^{k}\delta_{i,j}(\mathbf{z}_{j}-\mathbf{u})^{*}\right)^{*}$$

э

< □ > < □ > < □ > < □ > < □ >

Restricting it to \mathbb{C} , we get

Proposition

Given distinct points $\mathbf{u}, \mathbf{z}_1, \ldots, \mathbf{z}_k \in \mathbb{C}$, and $t, \alpha_j, \beta_j \in [0, 1]$, for $1 \leq j \leq k$, such that

$$\sum_{j=1}^k \alpha_j = \sum_{j=1}^k \beta_j = 1$$

there exist $\gamma_i, \delta_{i,j} \in [0,1]$, for $1 \leq i \leq 3$ and $1 \leq j \leq k$, such that

$$\sum\limits_{i=1}^{3}\gamma_{i}=\sum\limits_{j=1}^{k}\delta_{i,j}=1$$
 for all $1\leqslant i\leqslant 3$

and satisfying

$$\frac{1}{\frac{t}{\sum_{i=1}^{k} \alpha_i(\mathbf{z}_i - \mathbf{u})} + \frac{1 - t}{\sum_{i=1}^{k} \beta_i(\mathbf{z}_i - \mathbf{u})}} = \frac{\gamma_1}{\sum_{j=1}^{k} \frac{\delta_{1,j}}{\mathbf{z}_j - \mathbf{u}}} + \frac{\gamma_2}{\sum_{j=1}^{k} \frac{\delta_{2,j}}{\mathbf{z}_j - \mathbf{u}}} + \frac{\gamma_3}{\sum_{j=1}^{k} \frac{\delta_{3,j}}{\mathbf{z}_j - \mathbf{u}}}$$

• • • • • • • • • • • •

For $A \subseteq \hat{\mathbb{R}}^n$ we have $A \subseteq \mathcal{P}(\mathcal{P}(A))$

Shubbankar Rhatt (UMO)	Polar Convertity	ISMD 2024
	Polar Convexity	131018-2024

2 38 / 40

・ロト ・四ト ・ヨト ・ヨト

For $A \subseteq \hat{\mathbb{R}}^n$ we have $A \subseteq \mathcal{P}(\mathcal{P}(A))$

As a consequence, we get two increasing chains

٠	► < Ξ >	* 臣 ▶	1	うくで
Polar Convexity	ISMP-	2024		38 / 40

For $A \subseteq \hat{\mathbb{R}}^n$ we have $A \subseteq \mathcal{P}(\mathcal{P}(A))$

As a consequence, we get two increasing chains

 $A \subseteq \mathcal{P}(\mathcal{P}(A)) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(A)))) \subseteq \cdots$

 $\mathcal{P}(A) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(A))) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(A))))) \subseteq \cdots$

(日) (四) (日) (日) (日)

For $A \subseteq \hat{\mathbb{R}}^n$ we have $A \subseteq \mathcal{P}(\mathcal{P}(A))$

As a consequence, we get two increasing chains

 $A \subseteq \mathcal{P}(\mathcal{P}(A)) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(A)))) \subseteq \cdots$

$$\mathcal{P}(\mathcal{A}) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{A}))) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{A}))))) \subseteq \cdots$$

What are the sets A, B such that $\mathcal{P}(A) \supseteq B$ and $\mathcal{P}(B) \supseteq A$?

For $A \subseteq \hat{\mathbb{R}}^n$ we have $A \subseteq \mathcal{P}(\mathcal{P}(A))$

As a consequence, we get two increasing chains

 $A \subseteq \mathcal{P}(\mathcal{P}(A)) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(A)))) \subseteq \cdots$

 $\mathcal{P}(A) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(A))) \subseteq \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathcal{P}(A))))) \subseteq \cdots$

What are the sets A, B such that $\mathcal{P}(A) \supseteq B$ and $\mathcal{P}(B) \supseteq A$?

Moreover, what are the pairs of sets A, B such that $\mathcal{P}(A) = B$ and $\mathcal{P}(B) = A$?

		()

Thank You!

< □ > < □ > < □ > < □ > < □ >

Bibiliography I

- R.T. Rockafellar: Convex Analysis, Princeton University Press, (1970)
- Bl. Sendov, H. Sendov and C. Wang: Polar convexity and critical points of polynomials, J. Convex Anal. 26 (2), 635–660 (2019)
- Bl. Sendov, H. Sendov: Sets in the complex plane mapped into convex ones by Möbius transformations, *J. Convex Anal.* 27(3), 791–810 (2020)
- H. Sendov: Refinements of the Gauss-Lucas theorem using rational lemniscates and polar convexity. *Proc. Amer. Math. Soc.* 149(12), 5179–5193 (2021)
- A. F. Beardon: The Geometry of Discrete Groups, Springer New York, (1983)
- W. Specht: Eine Bemerkung zum Satze von Gauß-Lucas, Jahresbericht der Deutschen Mathematiker-Vereinigung, 62, 85–92 (1959)
- S. Bhatt, H. Sendov: On polar convexity in finite dimensional euclidean spaces, *To appear, Canad. J. Math.*, (2024)

э

< □ > < □ > < □ > < □ > < □ >